1
|
Mahapatra N, Chandra S, Ramanathan N, Sundararajan K. Structural Elucidation of N 2O Clusters at Low Temperatures: Exemplary Framework Stabilized by π-Hole-Driven N···O and N···N Pnicogen Bonding Interactions. J Phys Chem A 2024; 128:4623-4637. [PMID: 38867592 DOI: 10.1021/acs.jpca.4c01103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
N2O is a classic prototype, in which central nitrogen is sufficiently electropositive with a positive potential of 20 kcal mol-1 in magnitude to qualify it as a possible pnicogen. This was applied to a test with N2O clusters using ab initio calculations in association with various molecular topographic tools. The structure of the energetically dominant and N2O dimer was in favor of a perpendicular geometry, where the central nitrogen atom of the N2O submolecule assumed a near 90° angle with the adjacent N═O and/or N═N moiety, which provides the affirmation of central nitrogen as a possible π-hole-driven pnicogen. The terminal nitrogen and oxygen atoms of N2O continue to act as conventional electron donors (Lewis bases) with a negative potential. Overall, predominant π-hole-driven N···O and N···N pnicogen bonding interactions were observed to stabilize N2O clusters. Furthermore, N2O clusters (dimers and trimers) were synthesized at low temperatures in an Ar matrix using molecular beam (effusive and supersonic expansion) experiments. The geometries of these clusters were characterized by probing infrared spectroscopy with corroboration from ab initio computational methods. In addition to our previously investigated nitromethane and nitrobenzene systems, N2O also makes it to a pnicogen bonder's club with the central nitrogen as a π-hole-driven pnicogen.
Collapse
Affiliation(s)
- Nandalal Mahapatra
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Swaroop Chandra
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Nagarajan Ramanathan
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| | - Kalyanasundaram Sundararajan
- Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam 603102, Tamil Nadu, India
- Indira Gandhi Center for Atomic Research, A CI of Homi Bhabha National Institute, Kalpakkam603102, Tami Nadu, India
| |
Collapse
|
2
|
Suryaprasad B, Chandra S, Ramanathan N, Sundararajan K. Unique Dispersion-Induced Tetrel Bond with Co-operative σ-hole-Induced Pnicogen Bond in the POCl 3-Acetone Heterodimer: Experimental Confirmation at Low Temperatures. J Phys Chem A 2022; 126:6637-6647. [PMID: 36126354 DOI: 10.1021/acs.jpca.2c04635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Both tetrel and pnicogen bonds are known to be induced through σ-/π-holes. This work reports computational and experimental evidence of the carbonyl carbon of acetone hosting a tetrel bond by dispersion rather electrostatic forces, for the first time, while phosphorus of POCl3 sustains pnicogen bonding via the σ-hole. Heterodimers of POCl3 with acetone (CH3COCH3) have been isolated within inert gas matrixes of Ar and N2 at 12 K. Characteristic vibrational bands at P═O stretching of POCl3 and C═O stretching of CH3COCH3 have been obtained in support of the computations. The potential energy surface has been traced computationally using ab initio and density functional methods. CH3COCH3 harboring such a tetrel bond, in itself, is quite intriguing. The interplay of these interactions has been comprehended by the quantum theory of atoms in molecules, natural bond orbital, energy decomposition, electrostatic potential mapping, and noncovalent interaction analyses.
Collapse
Affiliation(s)
- Bodda Suryaprasad
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Swaroop Chandra
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Nagarajan Ramanathan
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kalyanasundaram Sundararajan
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu, India.,Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
3
|
Mahapatra N, Chandra S, Ramanathan N, Sundararajan K. Experimental proof for σ and π-hole driven dual pnicogen bonding in phosphoryl chloride-nitromethane heterodimers: A combined matrix isolation infrared and ab initio computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Ren B, Shi Y, Lu Y, Xu Z, Liu H. Double pentavalent pnictogen-bonding interactions in the homodimers of pnictogenoxide species: CSD search and theoretical study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|