1
|
Arya A, Chahar D, Bhakuni K, Vandana, Kumar S, Venkatesu P. Green Synthesis of Silver Nanoparticles Using Drymaria cordata and Their Biocompatibility with Hemoglobin: A Therapeutic Potential Approach. ACS APPLIED BIO MATERIALS 2024; 7:977-989. [PMID: 38198244 DOI: 10.1021/acsabm.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this study, we present the synthesis and characterization of AgNPs using Drymaria cordata along with an assessment of their antioxidant, antibacterial, and antidiabetic activities. Antibacterial activities using four bacterial strains, free radical scavenging assays (DPPH and ABTS), and carbohydrate hydrolyzing enzyme inhibition assays were done to examine the therapeutic efficacy of AgNPs. Additionally, herein, we also evaluated the biocompatibility of the AgNPs using hemoglobin (Hb) as a model protein. A comprehensive analysis of Hb and AgNP interactions was carried out by using various spectroscopic, imaging, and size determination studies. Spectroscopic results showed that the secondary structure of Hb was not altered after its interaction with AgNPs. Furthermore, the thermal stability was also well maintained at different concentrations of nanoparticles. This study demonstrated a low-cost, quick, and eco-friendly method for developing AgNPs using D. cordata, and the biocompatible nature of AgNPs was also established. D. cordata-mediated AgNPs have potential applications against bacteria and diabetes and may be utilized for targeted drug delivery.
Collapse
Affiliation(s)
- Atul Arya
- Medicinal Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi 110007, India
| | - Deepak Chahar
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Kavya Bhakuni
- St. Stephen's College, University of Delhi, Delhi 110007, India
| | - Vandana
- Dyal Singh College, University of Delhi, Delhi 110003, India
| | - Suresh Kumar
- Medicinal Plant Research Laboratory, Department of Botany, Ramjas College, University of Delhi, Delhi 110007, India
| | | |
Collapse
|
2
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
3
|
Phan KS, Nguyen TM, To XT, Le TTH, Nguyen TT, Pham KD, Hoang PH, Dong TN, Dang DK, Phan THT, Mai TTT, Ha PT. Allium sativum@AgNPs and Phyllanthus urinaria@AgNPs: a comparative analysis for antibacterial application. RSC Adv 2022; 12:35730-35743. [PMID: 36545079 PMCID: PMC9748653 DOI: 10.1039/d2ra06847h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Although medicinal herbs contain many biologically active ingredients that can act as antibiotic agents, most of them are difficult to dissolve in lipids and absorb through biofilms in the gastrointestinal tract. Besides, silver nanoparticles (AgNPs) have been widely used as a potential antibacterial agent, however, to achieve a bactericidal effect, high concentrations are required. In this work, AgNPs were combined into plant-based antibiotic nanoemulsions using biocompatible alginate/carboxyl methylcellulose scaffolds. The silver nanoparticles were prepared by a green method with an aqueous extract of Allium sativum or Phyllanthus urinaria extract. The botanical antibiotic components in the alcoholic extract of these plants were encapsulated with emulsifier poloxamer 407 to reduce the particle size, and make the active ingredients both water-soluble and lipid-soluble. Field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) analysis showed that the prepared nanosystems were spherical with a size of about 20 nm. Fourier transform infrared spectroscopy (FTIR) confirmed the interaction of the extracts and the alginate/carboxyl methylcellulose carrier. In vitro drug release kinetics of allicin and phyllanthin from the nanosystems exhibited a retarded release under different biological pH conditions. The antimicrobial activity of the synthesized nanoformulations were tested against Escherichia coli. The results showed that the nanosystem based on Allium sativum possesses a significantly higher antimicrobial activity against the tested organisms. Therefore, the combination of AgNPs with active compounds from Allium sativum extract is a good candidate for in vivo infection treatment application.
Collapse
Affiliation(s)
- Ke Son Phan
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Minh Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Xuan Thang To
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Thu Huong Le
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Thanh Trung Nguyen
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Kim Dang Pham
- Vietnam National University of Agriculture Trau Quy, Gia Lam Hanoi Vietnam
| | - Phuong Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thi Nham Dong
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Dinh Kim Dang
- Institute of Environmental Technology, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | | | - Thi Thu Trang Mai
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
4
|
Bidan AK, Al-Ali ZSA. Biomedical Evaluation of Biosynthesized Silver Nanoparticles by Jasminum Sambac (L.) Aiton Against Breast Cancer Cell Line, and Both Bacterial Strains Colonies. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The biosynthesis of silver nanoparticles (AgNPs) was conducted using the Iraqi Jasminum sambac (L.) Aiton leaves having substantial bioreduction and capping properties. The aqueous extract has been characterized using FTIR to observe changes in functional groups of extract compared to extract-AgNPs. GC-MS understands the mechanism synthesis of AgNPs based on the aqueous extract of J. sambac through identification of aqueous extracted. The synthesized AgNPs were characterized using UV–Vis at 455[Formula: see text]nm, XRD broad chart owing to size of AgNPs and TEM (AgNPs average size less than 10[Formula: see text]nm). FESEM-EDX was carried out to observe the nearly spherical shape with elemental composition. DLS was appointed with hydrodynamic radius as 105.9[Formula: see text]nm and also had a good polydispersity at 0.357, and [Formula: see text]-potential at [Formula: see text]23.1. AgNPs have antibacterial gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli), cytotoxicity MTT assay against breast cancer MCF-7 cell line IC50 at 222.6[Formula: see text][Formula: see text]g/mL, genotoxicity fragmented DNA of MCF-7 by comet assay, emphasized apoptosis cells through cell cycle flow cytometry. Overall, safe, cost-effective, and scalable biogenic nano-formulation of Jasminum sambac-AgNPs possesses antibacterial and anticancer therapeutic applications.
Collapse
Affiliation(s)
- Ali Kadhum Bidan
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | | |
Collapse
|
5
|
Production, Characterization, and Cytotoxicity Effects of Silver Nanoparticles from Brown Alga (Cystoseira myrica). JOURNAL OF NANOTECHNOLOGY 2022. [DOI: 10.1155/2022/6469090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A green, eco-friendly approach to biosynthesizing silver nanoparticles has been reported for marine macroalga (Cystoseira myrica) extract as a reducing agent. Different pH and temperature impact the green synthesis of silver nanoparticles suggesting that the synthesis depends greatly on pH and temperature. The structure and characters of synthesized nanoparticles were confirmed using HR-TEM, DLS, XRD, and FTIR. Cytotoxicity was indicated using provided cell lines of breast carcinoma cells (MCF-7) and human hepatocellular carcinoma cells (HepG2). Shape of silver nanoparticles at pH 9 and 75°C for 30 min was found to be suitable for the biosynthesis process and the AgNPs exhibited a characteristic absorption peak at 434 nm. High Resolution Electron Microscope Transmission reported polydisperse and spherical shapes ranging from 8 to 15 nm. High attractive and repulsive forces between each nanoparticle were recorded with an average zeta-potential value of approximately −29.3 mV. The X-ray diffraction study revealed the crystalline structure of silver nanoparticles. FTIR has shown the bioreduction of silver ions to silver nanoparticles through biomolecules found in algal extract. Silver nanoparticles have been found to have anticancer activity. The cytotoxicity assay was studied against MCF-7 and HepG2 at various concentrations (100, 50, 25, 12.5, 6.25, 3.125, 1.56, 0.78, 0.39, 0.2, and 0.1 μg/mL). By increasing the concentration of AgNPs from 0.1 to 100 μg/mL, the maximum percentage of viability against MCF-7 and HepG2 cell line decreased from 94.55 ± 7.55 to 19.879 ± 0.503 and from 78.56 ± 11.36 to 25.81 ± 2.66 after time exposure, respectively.
Collapse
|
6
|
Biomimetic green approach on the synthesis of silver nanoparticles using Calotropis gigantea leaf extract and its biological applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Comparative Chemical Profiling and Biological Potential of Essential Oils of Petal, Choke, and Heart Parts of Cynara scolymus L. Head. J CHEM-NY 2022. [DOI: 10.1155/2022/2355004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The essential oil and macroelemental composition of different parts of flower bud (petal, choke, and heart) of Cynara scolymus L. were explored and compared using gas chromatography mass spectrometry (GC-MS) and inductively coupled plasma mass spectrometry (ICP-MS). Overall, 62 organic components were detected in the flower bud based on mass spectra characteristics and retention indices. The essential oil extracted from the petals, choke, and bud showed the presence of thirty-one, twenty-one, and twenty-one compounds, respectively, with linoleic acid and palmitic acid as the major components. 21 components were identified in the oil of the petals, comprising 94.45% of the total oil, in which linoleic acid methyl ester, palmitic acid methyl ester, octadecanoic acid methyl ester, O-α-d-glucopyranoside, and heptyl oct-3-yl ester were the major constituents. Twenty-one compounds, representing 89.13% of the total oil, were detected in the choke oil. Linoleic acid methyl ester, palmitic acid methyl ester, and 2-methyl-1-hexadecanol were the main components. However, the edible heart oil contains twenty compounds, comprising 86.84% of the total oil. Cyclopropane butanoic acid, linoleic acid, methyl ester, and palmitic acid were the major constituents. The analysis executed by ICP-MS revealed the presence of significant amounts of various inorganic elements in all the three samples. The extracted essential oils were tested for antibacterial, antioxidant, and anticancer activities. The results showed that the oil extracted from the petals of C. scolymus flower bud displayed the highest antibacterial, antioxidant, anti-inflammatory, and anticancer effects, as compared to choke and heart oils.
Collapse
|