1
|
Elangovan N, Arumugam N, Pennamuthiriyan A, Garg A, Sivaramakrishnan V, Kanchi S, Santhamoorthy M. The role of biochemical and biophysical properties, molecular docking and dynamics studies on azelastine. Biochem Biophys Res Commun 2025; 763:151781. [PMID: 40222330 DOI: 10.1016/j.bbrc.2025.151781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/22/2025] [Accepted: 04/07/2025] [Indexed: 04/15/2025]
Abstract
The structure of the 4-(4-chlorobenzyl)-2-(1-methylazepan-4-yl) phthalazin-1(2H)-one (IA) was optimized through computational study. The optimized structure revealed that the bond length between atoms C3 and C5 was the longest at 1.54 Å, while the bond between atoms C10 and H31 had the lowest length at about 1.01 Å, respectively. The natural bond orbital (NBO) analysis indicates that the bonding π(C3-C20) to anti-bonding π∗(N2-C3) interaction exhibits the most significant stabilization energy of about 253.59 kcal/mol. Due to the solvent's influence, the gas phase MEP value and HOMO-LUMO band gap value are lower, when compared to solvents. A localized bond pair that undergoes movement between two atoms, and a bond pair that undergoes movement between two different pairs of atoms are identified by electron localized function (ELF), localized orbital locator (LOL), and average localized ionization energy (ALIE) studies, respectively. The electron density and thermodynamic properties were determined using Gaussian software. This study examined various parameters such as non-linear optical (NLO), molecular electrostatic potential (MEP), UV-vis, and HOMO-LUMO in different solvents. Further, the biological activity of the IA compound was studied using molecular docking and dynamics on the target Mycobacterium tuberculosis ArgF (7NOR) protein, which showed favorable protein-ligand interaction energy.
Collapse
Affiliation(s)
- Natarajan Elangovan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia.
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Anandaraj Pennamuthiriyan
- Department of Chemistry, K. Ramakrishnan College of Engineering (Autonomous), Samayapuram, Tiruchirappalli, Tamilnadu, India
| | - Anuj Garg
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Venketesh Sivaramakrishnan
- Disease Biology Lab, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | - Subbarao Kanchi
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Andhra Pradesh, India, 515134
| | | |
Collapse
|
2
|
Geetha Priya C, Venkatraman BR, Arockiaraj I, Sowrirajan S, Elangovan N, Islam MS, Mahalingam SM. Antimicrobial activity prediction, inter- and intramolecular charge transfer investigation, reactivity analysis and molecular docking studies of adenine derivatives. J Biomol Struct Dyn 2025; 43:372-385. [PMID: 37978905 DOI: 10.1080/07391102.2023.2281636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
The utilization of the density functional theory (DFT) methodology has developed as a highly efficient method for investigating molecular structure and vibrational spectra, and it is increasingly being employed in various applications relating to biological systems. This study focuses on conducting investigations, both experimental and computed, to analyze the molecular structure, electronic properties and features of (E)-4-(((9H-purin-6-yl)imino)methyl)-2-methoxyphenol (ANVA). The expression ANVA should be rewritten as follows: the compound is a derivative of adenine (primary amine), specifically a vanillin (aldehyde). The present study reports the synthesis, characterization, DFT, docking and antimicrobial activity of ANVA. The optimization of the molecular structure was conducted, and the determination of its structural features was performed using DFT with the B3LYP/cc-pVDZ method. The vibrational assignments were determined in detail by analyzing the potential energy distribution. A strong correlation was observed between the spectra that were observed and the spectra that were calculated. The calculation of intramolecular charge transfer was performed using natural bond orbital analysis. In addition, several computational methods were employed, including highest occupied molecular orbital-least unoccupied molecular orbital analysis, molecular electrostatic potential calculations, non-linear optical, reduced density gradient, localization orbital locator and electron localization function analysis. This paper examines the present use of adenine derivatives in combatting bacterial and fungal infections, as well as the inclusion of spectral and quantum chemical calculations in the discussion.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- C Geetha Priya
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - B R Venkatraman
- Department of Chemistry, Thanthai Periyar Government Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - I Arockiaraj
- Department of Chemistry, St. Joseph's College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - S Sowrirajan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | - N Elangovan
- Research Centre for Computational and Theoretical Chemistry, Tiruchirappalli, Tamil Nadu, India
| | | | | |
Collapse
|
3
|
Bheemayya L, Kamble RR, Shettar AK, Metre TV, Kodasi B, Sannaikar MS, Inamdar SR, M MPK, Hoskeri JH. Design and Synthesis of Novel Fluorescent 2-(aryloxy)-3-(4,5-diaryl)-1H-imidazol-2-yl)quinolines: Solvatochromic, DFT, TD-DFT Studies, COX-1 and COX-2 Inhibition and Antioxidant Properties. J Fluoresc 2024; 34:2239-2262. [PMID: 37733111 DOI: 10.1007/s10895-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
The present work focuses on the synthesis of novel heterocycles 2-(aryloxy)-3-(4,5-diaryl-1H-imidazol-2-yl)quinolines (6k-v) by an effective condensation reaction. These molecules exhibited fluorescent properties and hence for the proper understanding of their optical behavior and quantum yields, solvatochromic studies have been carried out. Further, frontier molecular orbitals, molecular electrostatic potential (MEP), and geometrical structure optimization have been investigated using the B3LYP/6-311G ++ (d, p) method. The energy gap between the HOMO, LUMO of the optical and energy band gap is determined by DFT and UV-visible spectra for TD-DFT studies are done. The screening of these compounds for in vitro COX-1 and COX-2 inhibition and DPPH free radical scavenging ability assays produced promising results. The binding interactions of these molecules against the COX-2 enzyme (PDB: 5IKR) were validated by docking studies.
Collapse
Affiliation(s)
- Lokesh Bheemayya
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Ravindra R Kamble
- Department of Chemistry, Karnatak University, Dharwad, 580003, India.
| | - Arun K Shettar
- Department of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd, Hubli, 580031, India
| | - Tukaram V Metre
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Barnabas Kodasi
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | | | - Sanjeev R Inamdar
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, India
| | - Mussuvir Pasha K M
- Department of Chemistry, Karnatak Science College, Dharwad, 580 003, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, 586108, India
| |
Collapse
|
4
|
Shi B, Zhang Y, Miao S, Jin F, Yu C, Zhang K, Yao C. Synthesis of Isoxazol-5(2 H)-one Derivatives via ( tBuO) 2Mg Promoted [3 + 2] Annulations of δ-Acetoxy Allenoates with Hydroxylamine. J Org Chem 2024. [PMID: 38805080 DOI: 10.1021/acs.joc.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Herein, an efficient (tBuO)2Mg promoted [3 + 2] annulation of δ-acetoxy allenoates with N-benzylhydroxylamine has been developed. This method provides a concise and facile protocol to synthesize vinylated isoxazol-5(2H)-one derivatives stereospecifically in a broad substrate scope with high efficiency (31 examples, up to 87% yield).
Collapse
Affiliation(s)
- Bai Shi
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Yu Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Siyan Miao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Fangyi Jin
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Chenxia Yu
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Kai Zhang
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| | - Changsheng Yao
- Jiangsu Key Lab of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou Jiangsu 221116, P. R. China
| |
Collapse
|
5
|
Kiruthika M, Raveena R, Yogeswaran R, Elangovan N, Arumugam N, Padmanaban R, Djearamane S, Wong LS, Kayarohanam S. Spectroscopic characterization, DFT, antimicrobial activity and molecular docking studies on 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole. Heliyon 2024; 10:e29566. [PMID: 38707390 PMCID: PMC11066587 DOI: 10.1016/j.heliyon.2024.e29566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024] Open
Abstract
The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.
Collapse
Affiliation(s)
- M. Kiruthika
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Raveena
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - R. Yogeswaran
- Department of Chemistry, Arignar Anna Government Arts College, Affiliated to Bharathidasan University, Musiri, 621211, Tiruchirappalli, Tamilnadu, India
| | - N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Musiri, Anjalam, 621208, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - R. Padmanaban
- Department of Chemistry, School of Physical, Chemical & Applied Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry, 605 014, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
6
|
Elangovan N, Arumugam N, Almansour AI, Mathew S, Djearamane S, Wong LS, Kayarohanam S. Synthesis, solvent role, absorption and emission studies of cytosine derivative. Heliyon 2024; 10:e28623. [PMID: 38590870 PMCID: PMC11000011 DOI: 10.1016/j.heliyon.2024.e28623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.
Collapse
Affiliation(s)
- N. Elangovan
- Research Centre for Computational and Theoretical Chemistry, Anjalam, 621208, Musiri, Tiruchirappalli, Tamilnadu, India
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shanty Mathew
- Department of Chemistry, St. Joseph's College Research Center, Shanthinagar, 560027, Bangalore, India
| | - Sinouvassane Djearamane
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, 31900, Malaysia
- Biomedical Research Unit and Lab Animal Research Centre, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602 105, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - Saminathan Kayarohanam
- Faculty of Bioeconomics and Health Sciences, University Geomatika Malaysia, Kuala Lumpur, 54200, Malaysia
| |
Collapse
|
7
|
Karacan Yeldir E. Fluorescent Oligomeric Nanoparticle from Diaminopyridine Compound Via Enzyme-Catalyzed Oxidation. J Fluoresc 2023; 33:2105-2117. [PMID: 37548818 DOI: 10.1007/s10895-023-03371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
An oligomeric nanoparticle was obtained through an enzyme-catalyzed oxidation reaction using Horse Radish Peroxidase (HRP) with the 2,3-diaminopyridine (DAP) compound as the starting material. The structural characterizations of the synthesized oligomeric nanoparticles [[oligo(DAP)]Enz] were performed with 1H-NMR and FT-IR. The surface features were determined by scanning electron microscopy. The optical properties were determined by UV-Vis and fluorescence spectra. It was found that the obtained oligomeric nanoparticles had a different fluorescent character with 15.90% quantum yield from the monomer and emitted green color at 485 nm when excited with light at a wavelength of 420 nm. The electrochemical band gap of the oligomeric nanoparticles, whose electrochemical character was investigated by cyclic voltammetry, was calculated as 2.09 eV. The thermal stability of the oligomeric material was determined from the mass loss against increasing temperature. The monomer exhibited greater thermal stability in comparison to the polymer, both in terms of the temperature at which the maximum mass loss occurred and the residual amount after heating concluded.
Collapse
Affiliation(s)
- Elif Karacan Yeldir
- Department of Chemistry, Polymer Synthesis and Analysis Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey.
| |
Collapse
|
8
|
Yadav CK, Nandeshwarappa B, Mussuvir Pasha K. Synthesis, computational study, solvatochromism and biological studies of thiazole-owing hydrazone derivatives. CHIMICA TECHNO ACTA 2023. [DOI: 10.15826/chimtech.2023.10.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
In the present work, we have synthesized thiazole-hydrazone conjugates 5(a–h) and characterized them using various analytical techniques such as UV, IR, NMR, and mass spectrometry. Solvatochromic properties were evaluated in ten solvents with different polarity and quantum chemical parameters using a DFT study. The antibacterial activity results revealed that compounds 5c, 5d and 5g exhibited good efficacy and that the remaining compounds displayed significant activity. The synthesized compounds were screened for their cytotoxic activity against HepG2 and MCF-7 cell lines, and all the synthesized compounds exhibited significant potency towards the screened cancer cell lines. The anti-inflammatory efficacy of the synthesized thiazole derivatives was determined against MMP-2 and MMP-9, and some of the compounds showed significant activity. Furthermore, the in silico molecular docking was performed with the COX-2 receptor.
Collapse
|
9
|
Geethapriya J, Rexalin Devaraj A, Gayathri K, Swadhi R, Elangovan N, S.Manivel, Sowrirajan S, Thomas R. Solid state synthesis of a fluorescent Schiff base (E)-1-(perfluorophenyl)-N-(o-toly)methanimine followed by computational, quantum mechanical and molecular docking studies. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
10
|
Basavaraju M, Bodke YD, Kumar N. Coumarin‐Benzothiazole Hydrazone for Probing of Latent Fingerprints and Anti‐Counterfeiting Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202200738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manjunatha Basavaraju
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University, Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Yadav D. Bodke
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University, Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Naveen Kumar
- Department of P.G. Studies and Research in Chemistry, P.G. Centre, Kadur- 577458 Karnataka India
| |
Collapse
|
11
|
Manjunatha B, Bodke YD, Kumaraswamy H, Mussuvir Pasha K, Prashanth N, kadam PR. Synthesis, computational, hepatoprotective, antituberculosis and molecular docking studies of some coumarin derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Synthesis of some novel isatin-thiazole conjugates and their computational and biological studies. Struct Chem 2022. [DOI: 10.1007/s11224-022-01892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Kiyani H, Daroughezadeh Z. Efficient and Aqoues Synthesis of 3,4-Disubstituted Isoxazol-5(4H)-one Derivatives Using Piperazine under Green Conditions. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Manjunatha B, Bodke YD, Mounesh, Nagaraja O, Navaneethgowda PV. Coumarin-pyridone conjugate as a fluorescent tag for LFPs visualization and electrochemical sensor for nitrite detection. NEW J CHEM 2022. [DOI: 10.1039/d1nj04751e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, a D–π–A based coumarin–pyridone conjugate (CPC) was synthesised by a one-pot multicomponent reaction and the structure was proven from infrared and nuclear magnetic resonance spectroscopies and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- B. Manjunatha
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Yadav D. Bodke
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Mounesh
- Department of P. G. Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, Karnataka, India
| | - O. Nagaraja
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - P. V. Navaneethgowda
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| |
Collapse
|
15
|
Kadam PR, Bodke YD, Naik MD, Nagaraja O, Manjunatha B. One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
16
|
Mezgebe K, Mulugeta E. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: a review. RSC Adv 2022; 12:25932-25946. [PMID: 36199603 PMCID: PMC9469491 DOI: 10.1039/d2ra04934a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, there is significant interest in the synthesis of heterocycle-incorporated azo dye derivatives as potential scaffolds in the pharmaceutical sector. The pharmaceutical or drug industries need a simplistic synthesis approach that can afford a wide range of azo dye derivatives. The incorporation of the heterocyclic moiety into the azo dye scaffold has improved the bioactive properties of the target derivatives. The various biological and pharmacological applications of drugs such as anti-fungal, anti-tuberculosis, anti-viral, anti-inflammatory, anti-cancer, anti-bacterial, DNA binding, and analgesic properties can be easily tuned by introducing heterocyclic moieties. To date, continuous efforts are being made in the search for more potent, new, and safe synthetic methodologies for azo dye derivatives. This review presents a brief discussion of the facile synthetic approaches and the relevance of the title compound and its derivatives towards various biological activities. Thus, the synthesis of azo dye derivatives incorporating heterocyclic scaffolds such as imidazole, pyrazole, thiazole, oxazolone, thiophene, pyrrole, benzothiazole and quinoline moieties and their pharmacological applications are discussed briefly. Nowadays, there is significant interest in the synthesis of heterocycle-incorporated azo dye derivatives as potential scaffolds in the pharmaceutical sector.![]()
Collapse
Affiliation(s)
- Kibrom Mezgebe
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Endale Mulugeta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|