1
|
Rashid SN, Hizaddin HF, Hayyan A, Chan SE, Hasikin K, Razak SA, Mokhtar MI, Azizan MM. A kinetic study of ex-situ soil remediation by nickel extraction using natural deep eutectic solvent. ENVIRONMENTAL TECHNOLOGY 2024; 45:4820-4833. [PMID: 37953730 DOI: 10.1080/09593330.2023.2283093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023]
Abstract
Using natural deep eutectic solvents (NADESs) as a green reagent is a step toward producing environmentally friendly and sustainable technology. This study screened three natural DESs developed using quaternary ammonium salt and organic acid to analyse their capability to extract nickel ions from contaminated mangrove soil, which are ChCl: Acetic Acid (ChCl-AceA), ChCl: Levulinic Acid (ChCl-LevA), and ChCl: Ethylene Glycol(ChCl-Eg) at molar ratio 1:2. The impact of various operating parameters such as washing agent concentration, pH solution, and contact time on the NADES performance in the dissolution of Ni ions batch experiments were performed. The optimal soil washing conditions for metal removal were 30% and 15% concentration, a 1:5 soil-liquid ratio, and pH 2 of ChCl-LevA and ChCl-AceA, respectively. A single removal washing may remove 70.8% and 70.0% Ni ions from the contaminated soil. The dissolution kinetic of Ni ions extraction onto NADES was explained using the linear kinetic pseudo and intraparticle mass transfer diffusion models. The kinetic validation demonstrates a good fit between the experimental and pseudo-second-order Lagergren data. The model's maximum Ni dissolution capacity, Qe are 51.56 mg g-1 and 52.00 mg g-1 of ChCl-LevA and ChCl-AceA, respectively. The synthesised natural-based DES has the potential to be a cost-effective, efficient, green alternative extractant to conventional solvent extraction of heavy metals.
Collapse
Affiliation(s)
- Shahidah Nusailah Rashid
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL) Universiti Malaya, Kuala Lumpur, Malaysia
| | - Hanee F Hizaddin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL) Universiti Malaya, Kuala Lumpur, Malaysia
| | - Adeeb Hayyan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
- University of Malaya Centre for Ionic Liquids (UMCiL) Universiti Malaya, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Center (SPEC), Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shee En Chan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Mohd Istajib Mokhtar
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Muhammad Mokhzaini Azizan
- Department of Electrical and Electronic Engineering, Faculty of Engineering and Built Environment, Universiti Sains Islam Malaysia, Negeri Sembilan, Malaysia
| |
Collapse
|
2
|
Jayachandran K, Gupta R, Gupta SK. Redox and emission characteristics of Eu3+ in deep eutectic solvent: Unraveling the hidden potential of DES as luminescent media. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|