1
|
Nirusha K, Nagendra Prasad HS, Lohith TN, Saravanan P, Mallesha L, Anand AP. Exploration of piperazine-citral sulfonyl derivatives: antibacterial and in-silico studies against methicillin-resistant Staphylococcus aureus. Arch Microbiol 2025; 207:56. [PMID: 39939442 DOI: 10.1007/s00203-025-04260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
This study involved the synthesis and characterization of piperazine-citral sulfonyl derivatives 5(a-e) using a variety of spectrum methods, including fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), carbon-nuclear magnetic resonance (13C NMR), and liquid chromatography mass spectroscopy (LC-MS). To obtain the energy and other quantum chemical computations of all the piperazine-citral sulfonyl derivatives, the following methods were evaluated: density functional theory (DFT); blood brain barrier (BBB); absorption, distribution, metabolism, and excretion (ADME); and prediction of activity spectra of computational screening (PASS) for their potential approaches for biological applications. The synthesized compounds were examined for drug-likeness, total surface area, polar surface area, H-acceptor and H-donor parameters, clogP and clogS, and other physicochemical features. The significant redesign of the piperazine core with the sulfonyl moiety encourages the search for novel antibacterial candidates among the resulting compounds to combat Methicillin-resistant Staphylococcus aureus (MRSA) superbugs. The antibacterial efficacy of 5(a-e) moieties against MRSA was evaluated. The 5c moiety shows a value of 29 µM and 15.08 ± 0.05 zone of inhibition (ZOI) in mm, which is lower than the minimum inhibitory concentration (MIC) value of streptomycin, which is 17 μM (18.16 ± 0.08) ZOI in mm). An in-silico docking study on the protein 3SRW of MRSA confirmed that the biocidal properties were effective against MRSA. The findings that were gathered made it very evident that 5c had a significantly greater docking score, and a stronger binding affinity. To verify the antibacterial activity, SEM, potassium efflux, cellular leakage, and an inhibitory effect on the electron transport chain were employed. HEK 293 cell lines were used to evaluate the 5c analogue's cytotoxicity, and its behaviour under haemostatic circumstances was well-established. As a prospective antibacterial competitor against MRSA, 5c analogue has the potential to be a cutting-edge medication for the complete eradication of MRSA infections, according to the data obtained.
Collapse
Affiliation(s)
- K Nirusha
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, 570 006, India
| | - H S Nagendra Prasad
- Department of Chemistry, Sri Jayachamarajendra College of Engineering, JSS Science and Technology University, Mysuru, Karnataka, 570 006, India.
| | - T N Lohith
- Department of Physics, The National Institute of Engineering, Mysuru, Karnataka, 570008, India
| | - P Saravanan
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, 570015, India
| | - L Mallesha
- PG Department of Chemistry, JSS College of Arts, Commerce and Science, Mysuru, Karnataka, 570025, India
| | - A P Anand
- Ganesh Consultancy & Analytical Services, Mysuru, Karnataka, 570008, India
| |
Collapse
|
2
|
Guerra C, Burgos J, Ayarde-Henríquez L, Chamorro E. Formulating Reduced Density Gradient Approaches for Noncovalent Interactions. J Phys Chem A 2024; 128:6158-6166. [PMID: 39042821 DOI: 10.1021/acs.jpca.4c01667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
This work elucidates several forms of reduced electron density gradient (RDG) to describe noncovalent interactions (NCIs). By interpreting the RDG as a local moment function, we systematically leveraged Weizacker's and Fermi's local moments. This resulted in high-fidelity RDG representations consistent with the NCI analysis. In addition, the RDG version derived from the Lagrangian kinetic energy density is conveniently normalized. These results suggest the nonexistence of a particular RDG formulation when performing NCI analysis. Thus, an in-depth examination of the theoretical foundations connecting the RDG function with the nature of noncovalent interactions is necessary.
Collapse
Affiliation(s)
- Cristian Guerra
- Facultad de Ciencias Exactas. Departamento de Ciencias Químicas, Universidad Andrés Bello. Avenida República 275, 8370146 Santiago de Chile, Chile
| | - José Burgos
- Facultad de Ciencias Exactas. Departamento de Ciencias Químicas, Universidad Andrés Bello. Avenida República 275, 8370146 Santiago de Chile, Chile
| | - Leandro Ayarde-Henríquez
- School of Physics, Trinity College Dublin, Dublin 2, Ireland
- AMBER, Advanced Materials and BioEngineering Research Centre, Dublin 2, Ireland
| | - Eduardo Chamorro
- Facultad de Ciencias Exactas. Departamento de Ciencias Químicas, Universidad Andrés Bello. Avenida República 275, 8370146 Santiago de Chile, Chile
- Centro de Química Teórica y Computacional (CQTC), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bello. Avenida República 275, 8370146 Santiago de Chile, Chile
| |
Collapse
|
3
|
Canales CSC, Pavan AR, Dos Santos JL, Pavan FR. In silico drug design strategies for discovering novel tuberculosis therapeutics. Expert Opin Drug Discov 2024; 19:471-491. [PMID: 38374606 DOI: 10.1080/17460441.2024.2319042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
INTRODUCTION Tuberculosis remains a significant concern in global public health due to its intricate biology and propensity for developing antibiotic resistance. Discovering new drugs is a protracted and expensive endeavor, often spanning over a decade and incurring costs in the billions. However, computer-aided drug design (CADD) has surfaced as a nimbler and more cost-effective alternative. CADD tools enable us to decipher the interactions between therapeutic targets and novel drugs, making them invaluable in the quest for new tuberculosis treatments. AREAS COVERED In this review, the authors explore recent advancements in tuberculosis drug discovery enabled by in silico tools. The main objectives of this review article are to highlight emerging drug candidates identified through in silico methods and to provide an update on the therapeutic targets associated with Mycobacterium tuberculosis. EXPERT OPINION These in silico methods have not only streamlined the drug discovery process but also opened up new horizons for finding novel drug candidates and repositioning existing ones. The continued advancements in these fields hold great promise for more efficient, ethical, and successful drug development in the future.
Collapse
Affiliation(s)
- Christian S Carnero Canales
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
- School of Pharmacy, biochemistry and biotechnology, Santa Maria Catholic University, Arequipa, Perú
| | - Aline Renata Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| | | | - Fernando Rogério Pavan
- School of Pharmaceutical Science, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
4
|
Tumakuru Nagarajappa L, Chikkappaiahnayaka S, Benedict Leoma M, Isamura BK, Venkatesh K, Singh KR, Sindogi K, Mandayam Anandalwar S, P Sadashiva M. Unraveling the crystal structure, stability and drug likeness of 1,3,4-oxadiazole derivatives against Myelofibrosis: a combined experimental and computational investigation. J Biomol Struct Dyn 2024:1-15. [PMID: 38555733 DOI: 10.1080/07391102.2024.2330013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/20/2024] [Indexed: 04/02/2024]
Abstract
Herein, we report the synthesis and characterization of novel 1,3,4-oxadiazole derivatives, 2-methoxybenzyl 5-(4-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C1) 2-methoxybenzyl 5-(2-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C2), and methoxybenzyl 5-(3-chlorophenyl)-1,3,4-oxadiazole-2-carboxylate (C3) obtained through desulfurative cyclization reaction. The compound C2 was crystallized, and its crystal structure was elucidated using single-crystal X-ray diffraction technique. The Hirshfeld surface analysis was carried out to analyze, visualize and globally appreciate the weak interactions involved in crystal packing. These analyses were complemented by Quantum Theory of Atoms In Molecules (QTAIM) and Reduced Density Gradient (RDG), which allowed us to decipher the nature and types of attractive forces that contribute to maintain the crystal structure of the titled compound. Moreover, the ADME profile of the compound was predicted to assess its drug likeness. Finally, in silico studies were performed to explore the binding affinity of the compounds (C1-3) against Myelofibrosis through molecular docking and molecular dynamic simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Lohith Tumakuru Nagarajappa
- Department of Physics, The National Institute of Engineering, Mysuru, India
- Department of Studies in Physics, University of Mysore, Mysuru, Karnataka, India
| | | | | | | | - Karthik Venkatesh
- Department of Studies in Physics, University of Mysore, Mysuru, Karnataka, India
| | - Krishna Ravi Singh
- Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India
| | - Kishorkumar Sindogi
- Solid state and Structural Chemistry Unit (SSCU), Indian Institute of Science (IISc), Bangalore, India
| | | | | |
Collapse
|
5
|
Yadav R, Meena D, Singh K, Tyagi R, Yadav Y, Sagar R. Recent advances in the synthesis of new benzothiazole based anti-tubercular compounds. RSC Adv 2023; 13:21890-21925. [PMID: 37483662 PMCID: PMC10359851 DOI: 10.1039/d3ra03862a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
This review highlights the recent synthetic developments of benzothiazole based anti-tubercular compounds and their in vitro and in vivo activity. The inhibitory concentrations of the newly synthesized molecules were compared with the standard reference drugs. The better inhibition potency was found in new benzothiazole derivatives against M. tuberculosis. Synthesis of benzothiazole derivatives was achieved through various synthetic pathways including diazo-coupling, Knoevenagel condensation, Biginelli reaction, molecular hybridization techniques, microwave irradiation, one-pot multicomponent reactions etc. Other than recent synthetic developments, mechanism of resistance of anti-TB drugs is also incorporated in this review. Structure activity relationships of the new benzothiazole derivatives along with the molecular docking studies of selected compounds have been discussed against the target DprE1 in search of a potent inhibitor with enhanced anti-tubercular activity.
Collapse
Affiliation(s)
- Rakhi Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Dilkhush Meena
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University New Delhi-110067 India
| |
Collapse
|
6
|
BOMBOM M, GİRGİN A, ZAMAN BT, TURAK F, BAKIRDERE S. Combination of smartphone digital image colorimetry and UV-Vis spectrophotometry as detection systems with solidified floating organic drop microextraction as preconcentration method for the quantification of methyl red in wastewater samples. Turk J Chem 2023; 47:1075-1084. [PMID: 38173744 PMCID: PMC10760811 DOI: 10.55730/1300-0527.3595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/31/2023] [Accepted: 05/31/2023] [Indexed: 01/05/2024] Open
Abstract
In this study, a portable smartphone-based digital image colorimetric system (SDIC) was designed and integrated with a solidified floating organic drop microextraction method (SFODME) for the quantification of methyl red in textile wastewater samples. The RGB (red, green, and blue) data were evaluated for each captured image, and the green channel was selected for quantification due to its linear response for the analyte. Under optimal conditions, an acceptable linear range was recorded for the analyte. The proposed method recorded a limit of detection (LOD) value of 0.046 mg/L. The developed microextraction method was also combined with UV-Vis spectrophotometry, which recorded an LOD value of 0.012 mg/L. Real sample analysis was carried out with textile wastewater samples to check the applicability/accuracy of the developed method, using a matrix matching calibration strategy to enhance quantification accuracy. Satisfactory percent recoveries in the range of 93.3%-114.3% and 92%-92.7% were recorded for the SFODME-SDIC and SFODME-UV methods, respectively.
Collapse
Affiliation(s)
- Miray BOMBOM
- Department of Bioengineering, Faculty of Chemistry and Metallurgy, Yıldız Technical University, İstanbul,
Turkiye
| | - Ayça GİRGİN
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, İstanbul,
Turkiye
| | - Buse Tuğba ZAMAN
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, İstanbul,
Turkiye
| | - Fatma TURAK
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, İstanbul,
Turkiye
| | - Sezgin BAKIRDERE
- Department of Chemistry, Faculty of Arts and Science, Yıldız Technical University, İstanbul,
Turkiye
- Turkish Academy of Sciences (TÜBA), Ankara,
Turkiye
| |
Collapse
|
7
|
Yadav CK, Nandeshwarappa B, Mussuvir Pasha K. Synthesis, computational study, solvatochromism and biological studies of thiazole-owing hydrazone derivatives. CHIMICA TECHNO ACTA 2023. [DOI: 10.15826/chimtech.2023.10.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
In the present work, we have synthesized thiazole-hydrazone conjugates 5(a–h) and characterized them using various analytical techniques such as UV, IR, NMR, and mass spectrometry. Solvatochromic properties were evaluated in ten solvents with different polarity and quantum chemical parameters using a DFT study. The antibacterial activity results revealed that compounds 5c, 5d and 5g exhibited good efficacy and that the remaining compounds displayed significant activity. The synthesized compounds were screened for their cytotoxic activity against HepG2 and MCF-7 cell lines, and all the synthesized compounds exhibited significant potency towards the screened cancer cell lines. The anti-inflammatory efficacy of the synthesized thiazole derivatives was determined against MMP-2 and MMP-9, and some of the compounds showed significant activity. Furthermore, the in silico molecular docking was performed with the COX-2 receptor.
Collapse
|
8
|
Sahana D, Dileep C, Lohith T, Akhileshwari P, Srikantamurthy N, Chandra, Rajesh B, Gopalkrishne UR, Sridhar M. Crystal structure studies, Hirshfeld surface analysis, 3D energy frameworks, computational studies and docking analysis of a 2-(4-nitrophenyl)-2-oxoethyl 2-methoxybenzoate. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
9
|
Xie YL, Ye FP, Zhao SQ. Preparation of magnetic Co–Fe layered double hydroxides and its adsorption properties for the removal of methyl orange. JOURNAL OF CHEMICAL RESEARCH 2023. [DOI: 10.1177/17475198221150382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, Co–Fe layered double hydroxides are prepared by a hydrothermal method. The Co–Fe layered double hydroxides are used as an adsorbent for the investigation of the thermodynamic parameters and adsorption kinetics of methyl orange from aqueous solution. The results show that adsorption is affected by adsorbent dosage, adsorption time, and temperature. The characteristics of samples are investigated using X-ray powder diffraction, scanning electron microscopy, Fourier-transform infrared spectroscopy, and N2 adsorption–desorption isotherms. The adsorption saturation level of Co–Fe layered double hydroxides on methyl orange is studied, with the results showing that the maximum uptake capacity for methyl orange is 10.21 mg g−1 based on Co–Fe layered double hydroxides. The adsorption kinetics of methyl orange is consistent with the Temkin isotherm equation and quasi-secondary kinetic model. Furthermore, separation is easily accomplished under the action of an applied magnetic field. The prepared Co–Fe layered double hydroxides can be applied as an effective adsorbent for decontamination of anionic dyes in industrial effluents.
Collapse
Affiliation(s)
- Yu-Long Xie
- Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, P.R. China
| | - Fa-Ping Ye
- Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining, P.R. China
| | - Su-Qin Zhao
- Qinghai Provincial Key Laboratory of Nanomaterials and Nanotechnology, School of Physics and Electronic Information Engineering, Qinghai Minzu University, Xining, P.R. China
| |
Collapse
|
10
|
Kadam PR, Bodke YD, B M, Pushpavathi I, Satyanarayan ND, Nippu B. Synthesis, Characterization, DFT and Biological Study of New Methylene Thio-Linked Coumarin Derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Battison A, Schoeman S, Mama N. A Coumarin-azo Derived Colorimetric Chemosensor for Hg 2+ Detection in Organic and Aqueous Media and its Extended Real-world Applications. J Fluoresc 2023; 33:267-285. [PMID: 36413253 DOI: 10.1007/s10895-022-03065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022]
Abstract
Pollution caused by the release of toxic heavy metals into the environment by industrial and farming processes has been regarded as a major problem worldwide. This has attracted a great deal of attention into restoration and remediation. Mercury is classified as a toxic heavy metal which has posed significant challenges to public and environmental health. To date, conventional methods for mercury detection rely on expensive, destructive, complex, and highly specialized methods. Evidently, there is a need to develop systems capable of easily identifying and quantifying mercury within the environment. In this way, organic-based colorimetric chemosensors are gaining increasing popularity due to their high sensitivity, selectivity, cost-effectiveness, ease of design, naked-eye, and on-site detection ability. The formation of coumarin-azo derivative AD1 was carried out by a conventional diazotization reaction with coumarin-amine 1c and N,N-dimethylaniline. Sensor AD1 displayed remarkable visual colour change upon mercury addition with appreciable selectivity and sensitivity. The detection limit was calculated as 0.24 µM. Additionally, the reversible nature of AD1 allowed for the construction of an IMPLICATION type logic gate and Molecular Keypad Lock. Chemosensor AD1 displayed further sensing applications in real-world water samples and towards on-site assay methods. Herein, we describe a coumarin-derived chemosensor bearing an azo (N = N) functionality for the colorimetric and quantitative determination of Hg2+ in organic and aqueous media.
Collapse
Affiliation(s)
- Aidan Battison
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Stiaan Schoeman
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa
| | - Neliswa Mama
- Department of Chemistry, Nelson Mandela University, P.O. Box 77000, Port Elizabeth, 6031, South Africa.
| |
Collapse
|
12
|
(E)-3-(2-(4-methylthiazol-2-yl)hydrazineylidene)chromane-2,4-dione. MOLBANK 2022. [DOI: 10.3390/m1504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
(E)-3-(2-(4-methylthiazol-2-yl)hydrazineylidene)chromane-2,4-dione was synthesized for the first time and the compound was characterized by 1H and 13C spectroscopy, IR spectroscopy, and UV-Vis. The chemical structure and isomeric configuration of the molecule were confirmed by single-crystal X-ray diffraction.
Collapse
|
13
|
Basavaraju M, Bodke YD, Kumar N. Coumarin‐Benzothiazole Hydrazone for Probing of Latent Fingerprints and Anti‐Counterfeiting Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202200738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manjunatha Basavaraju
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University, Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Yadav D. Bodke
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University, Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Naveen Kumar
- Department of P.G. Studies and Research in Chemistry, P.G. Centre, Kadur- 577458 Karnataka India
| |
Collapse
|
14
|
Manjunatha B, Bodke YD, Kumaraswamy H, Mussuvir Pasha K, Prashanth N, kadam PR. Synthesis, computational, hepatoprotective, antituberculosis and molecular docking studies of some coumarin derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Manjunatha B, Bodke YD, Venkatesh T, Pasha KMM, Jain RSK. Synthesis of Novel Sulfonamide Incorporated Azo Compounds as a PotentSolvatochromic and Antimycobacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202200036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- B. Manjunatha
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Yadav D. Bodke
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University Shankaraghatta- 577451 Shivamogga Karnataka India
| | - Talavara Venkatesh
- Department of P.G. Studies and Research in Chemistry Jnana Sahyadri Kuvempu University Shankaraghatta- 577451 Shivamogga Karnataka India
| | - K M. Mussuvir Pasha
- Department of P.G. Studies and Research in Chemistry Vijayanagara Sri Krishnadevaraya University Ballari 583105 Karnataka India
| | - R. Sandeep Kumar Jain
- Department of P.G. Studies and Research in Biotechnology Jnana Sahyadri Kuvempu University Shankaraghatta 577451 Shivamogga Karnataka India
| |
Collapse
|
16
|
Synthesis of some novel isatin-thiazole conjugates and their computational and biological studies. Struct Chem 2022. [DOI: 10.1007/s11224-022-01892-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Novel thioether linked 4-hydroxycoumarin derivatives: Synthesis, characterization, in vitro pharmacological investigation and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Manjunatha B, Bodke YD, Mounesh, Nagaraja O, Navaneethgowda PV. Coumarin-pyridone conjugate as a fluorescent tag for LFPs visualization and electrochemical sensor for nitrite detection. NEW J CHEM 2022. [DOI: 10.1039/d1nj04751e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this work, a D–π–A based coumarin–pyridone conjugate (CPC) was synthesised by a one-pot multicomponent reaction and the structure was proven from infrared and nuclear magnetic resonance spectroscopies and high-resolution mass spectrometry.
Collapse
Affiliation(s)
- B. Manjunatha
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Yadav D. Bodke
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - Mounesh
- Department of P. G. Studies and Research in Chemistry, Vijayanagara Sri Krishnadevaraya University, Ballari-583105, Karnataka, India
| | - O. Nagaraja
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| | - P. V. Navaneethgowda
- Department of P. G. Studies and Research in Chemistry, Jnana Sahyadri, Kuvempu University Shankaraghatta, 577451, Shivamogga, Karnataka, India
| |
Collapse
|
19
|
Kadam PR, Bodke YD, Naik MD, Nagaraja O, Manjunatha B. One-pot three-component synthesis of thioether linked 4-hydroxycoumarin-benzothiazole derivatives under ambient condition and evaluation of their biological activity. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
20
|
Mezgebe K, Mulugeta E. Synthesis and pharmacological activities of azo dye derivatives incorporating heterocyclic scaffolds: a review. RSC Adv 2022; 12:25932-25946. [PMID: 36199603 PMCID: PMC9469491 DOI: 10.1039/d2ra04934a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Nowadays, there is significant interest in the synthesis of heterocycle-incorporated azo dye derivatives as potential scaffolds in the pharmaceutical sector. The pharmaceutical or drug industries need a simplistic synthesis approach that can afford a wide range of azo dye derivatives. The incorporation of the heterocyclic moiety into the azo dye scaffold has improved the bioactive properties of the target derivatives. The various biological and pharmacological applications of drugs such as anti-fungal, anti-tuberculosis, anti-viral, anti-inflammatory, anti-cancer, anti-bacterial, DNA binding, and analgesic properties can be easily tuned by introducing heterocyclic moieties. To date, continuous efforts are being made in the search for more potent, new, and safe synthetic methodologies for azo dye derivatives. This review presents a brief discussion of the facile synthetic approaches and the relevance of the title compound and its derivatives towards various biological activities. Thus, the synthesis of azo dye derivatives incorporating heterocyclic scaffolds such as imidazole, pyrazole, thiazole, oxazolone, thiophene, pyrrole, benzothiazole and quinoline moieties and their pharmacological applications are discussed briefly. Nowadays, there is significant interest in the synthesis of heterocycle-incorporated azo dye derivatives as potential scaffolds in the pharmaceutical sector.![]()
Collapse
Affiliation(s)
- Kibrom Mezgebe
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Endale Mulugeta
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|