1
|
Żamojć K, Milaș D, Grabowska O, Wyrzykowski D, Mańkowska M, Krzymiński K. Insight into the intercalation of N-substituted acridine-9-amines into DNA based on spectroscopic and calorimetric analysis. Biochim Biophys Acta Gen Subj 2024; 1869:130741. [PMID: 39694300 DOI: 10.1016/j.bbagen.2024.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/30/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
The study delves into the binding properties of acridine-9-amine and its selected, mainly N-substituted derivatives (A9As), with calf thymus deoxyribonucleic acid (CT-DNA). This investigation, conducted using UV-Vis spectrophotometry, steady-state fluorescence spectroscopy and isothermal titration calorimetry, provides insights into the relationship between their structure and activity. The absorption spectra of the A9As exhibited a slight red shift and significant hypochromic effects, while the fluorescence emission intensities decreased in the presence of CT-DNA. These results suggest that all fluorescent substrates intercalate into the double helix of native DNA to varying degrees. The binding constants for the A9As/CT-DNA complexes (log(KA) were determined using various techniques in the range from 2.59 to 5.50). The thermodynamic parameters of A9As binding to DNA were obtained from ITC measurements (ΔG from - 7.51 to - 6.75 kcal·mol-1, ΔH from - 11.58 to - 3.83 kcal·mol-1, and TΔS from - 4.83 to 3.68 kcal·mol-1) and indicated that the formation of all the investigated A9As-DNA complexes is an enthalpy-driven process. The study also discusses the influence of the emitters' structure and electronic properties of substituents on intercalation efficiency. This knowledge serves as a guide for further research and offers directions for functionalising new acridines as potential reagents. It also provides the latest information on the ability of intercalation to DNA, which can be instrumental in studies on the mechanism of binding small aromatic molecules to DNA and can potentially contribute to new anticancer drug designs.
Collapse
Affiliation(s)
- Krzysztof Żamojć
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Dan Milaș
- Faculty of Chemistry, Biology, Geography, West University of Timișoara, Strada Johann Heinrich Pestalozzi 16, Timișoara, Romania
| | - Ola Grabowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Dariusz Wyrzykowski
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Magdalena Mańkowska
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Karol Krzymiński
- Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| |
Collapse
|
2
|
Das R, Dash PP, Bishoyi AK, Mohanty P, Mishra L, Prusty L, Sahoo CR, Padhy RN, Mishra M, Sahoo H, Sahoo SK, Sethi SK, Jali BR. Antibacterial and cytotoxicity studies of pyrrolo-based organic scaffolds and their binding interaction with bovine serum albumin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8725-8743. [PMID: 38829386 DOI: 10.1007/s00210-024-03187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.
Collapse
Affiliation(s)
- Rosalin Das
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India
| | - Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Ajit K Bishoyi
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Lokanath Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Laxmipriya Prusty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Chita R Sahoo
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Rabindra N Padhy
- Central Research Laboratory, Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan Deemed University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Mishra
- Department of Life Science, National Institute of Technology, Rourkela, 769008, India
| | - Harekrushna Sahoo
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, India
| | - Suban K Sahoo
- Department of Chemistry, SV National Institute of Technology, Surat, 395007, Gujarat, India
| | - Santosh K Sethi
- School of Biotechnology, Gangadhar Meher University, Sambalpur, 768001, Odisha, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| |
Collapse
|
3
|
Aggarwal R, Kumar P, Hooda M, Kumar S. Serendipitous N, S-difunctionalization of triazoles with trifluoromethyl-β-diketones: access to regioisomeric 1-trifluoroacetyl-3-aryl-5-(2-oxo-2-arylethylthio)-1,2,4-triazoles as DNA-groove binders. RSC Adv 2024; 14:6738-6751. [PMID: 38405072 PMCID: PMC10884789 DOI: 10.1039/d4ra00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024] Open
Abstract
In the present research work, a serendipitous regioselective synthesis of DNA targeting agents, 1-trifluoroacetyl-3-aryl-5-(2-oxo-2-arylethylthio)-1,2,4-triazoles, has been achieved through the one-pot cascade reaction of 3-mercapto[1,2,4]triazoles with trifluoromethyl-β-diktetones in presence of NBS instead of the cyclized thiazolo[3,2-b][1,2,4]triazole. The present protocol offered a unique approach for functionalizing both N-acylation and S-alkylation in a concerted fashion. The structures of the regioisomeric products were thoroughly characterized by heteronuclear 2D NMR experiments. Facile scalability and excellent atom economy through easily available starting reactants are the notable features of the present sustainable protocol. Targeting tumor cell DNA with minor groove-binding small molecules has proven highly effective in the recent past, drawing significant attention for combating tumor-related afflictions. In this context, the synthesized analogs were primarily screened for their ability to bind with the DNA duplex d(CGCGAATTCGCG)2 using molecular modeling tools. Additionally, the most promising compound 14m was deployed as a probe for DNA sensing and interaction mechanisms with calf thymus (ct)DNA through various spectral techniques at a physiologic temperature of 37 °C. It has been found that the compound demonstrated a strong binding affinity (Kb = 1 × 105 M-1) with double-helical DNA, particularly within the minor groove, resulting in the formation of a stable complex through static quenching (Kq = 5.86 ± 0.11 × 1012 M-1 s-1). The fluorescent displacement assay confirmed that the quencher binds to the minor groove of ctDNA, further supported by circular dichroism and viscosity studies.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 Haryana India
- Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research New Delhi 110012 India +91-9896740740
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 Haryana India
| | - Mona Hooda
- Department of Chemistry, Gurugram University Gurugram-122003 Haryana India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119 Haryana India
| |
Collapse
|
4
|
Kuzpınar E, Al Faysal A, Şenel P, Erdoğan T, Gölcü A. Quantification of mirtazapine in tablets via DNA binding mechanism; development of a new HPLC method. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:124019. [PMID: 38309044 DOI: 10.1016/j.jchromb.2024.124019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Atypical antidepressant mirtazapine (MIR) is mostly prescribed for the management of major depressive disorder. The identification of MIR in pharmaceutical dosage forms was made possible by developing a novel, quick, sensitive high-performance liquid chromatography (HPLC) approach that was verified in accordance with ICH recommendations. In the first part of this study, HPLC investigations were optimized with regard to variables including pH, working column, mobile phase, temperature, and flow rate. The limit of detection (LOD) was 0.013 ppm, the limit of quantification (LOQ) was 0.044 ppm, and the linear range was computed as 0.5-15 ppm (R2 = 0.9998). The recovery investigation assessed the method's accuracy, which was shown to range between 98.82 and 100.97 %. In the second part, by using UV-vis spectroscopy, HPLC, thermal denaturation, and viscosity measurements, the mechanism of binding interaction of MIR with double-stranded fish sperm deoxyribonucleic acid (dsDNA) has been thoroughly studied. The DNA binding constants (Kb) were determined using UV-Vis absorption and HPLC methods. To investigate the interactions of MIR with dsDNA, molecular docking calculations and additionally, molecular dynamics simulations were performed. Results showed that MIR is located in the minor groove of dsDNA, and in addition to hydrogen bonding, electrostatic interaction is also formed between the aromatic ring of MIR and phosphate oxygen of dsDNA. Finally, a binding characterization study using MIR tablets was also conducted in order to assess the interaction mechanism of the DNA with the drug using the validated analytical procedure developed for the MIR molecule.
Collapse
Affiliation(s)
- Ecem Kuzpınar
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Abdullah Al Faysal
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Pelin Şenel
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye
| | - Taner Erdoğan
- Kocaeli University, Kocaeli Vocational School, Department of Chemistry and Chemical Processing Technologies, Kocaeli, 41140, Türkiye
| | - Ayşegül Gölcü
- Istanbul Technical University, Faculty of Sciences and Letters, Department of Chemistry, Maslak, Istanbul, Türkiye.
| |
Collapse
|
5
|
Oxadiazole Schiff Base as Fe 3+ Ion Chemosensor: "Turn-off" Fluorescent, Biological and Computational Studies. J Fluoresc 2023; 33:751-772. [PMID: 36515760 DOI: 10.1007/s10895-022-03083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Compound, (E)-5-(4-((thiophen-2-ylmethylene)amino)phenyl)-1,3,4-oxadiazole-2-thiol (3) was synthesized via condensation reaction of 5-(4-aminophenyl)-1,3,4-oxadiazole-2-thiol with thiophene-2-carbaldehyde in ethanol. For the synthesis and structural confirmation the FT-IR, 1H, 13C-NMR, UV-visible spectroscopy, and mass spectrometry were carried out. The long-term stability of the probe (3) was validated by the experimental as well as theoretical studies. The sensing behaviour of the compound 3 was monitored with various metal ions (Ca2+, Cr3+, Fe3+, Co2+, Mg2+, Na+, Ni2+, K+) using UV- Vis. and fluorescence spectroscopy techniques by various methods (effect of pH and density functional theory) which showing the most potent sensing behaviour with iron. Job's plot analysis confirmed the binding stoichiometry ratio 1:1 of Fe3+ ion and compound 3. The limit of detection (LOD), the limit of quantification (LOQ), and association constant (Ka) were calculated as 0.113 µM, 0.375 µM, and 5.226 × 105 respectively. The sensing behavior was further confirmed through spectroscopic techniques (FT-IR and 1H-NMR) and DFT calculations. The intercalative mode of binding of oxadiazole derivative 3 with Ct-DNA was supported through UV-Vis spectroscopy, fluorescence spectroscopy, viscosity, cyclic voltammetry, and circular dichroism measurements. The binding constant, Gibb's free energy, and stern-volmer constant were find out as 1.24 × 105, -29.057 kJ/mol, and 1.82 × 105 respectively. The cleavage activity of pBR322 plasmid DNA was also observed at 3 × 10-5 M concentration of compound 3. The computational binding score through molecular docking study was obtained as -7.4 kcal/mol. Additionally, the antifungal activity for compound 3 was also screened using broth dilution and disc diffusion method against C. albicans strain. The synthesized compound 3 showed good potential scavenging antioxidant activity against DPPH and H2O2 free radicals.
Collapse
|
6
|
Sultana R, Ali A, Twala C, Mehandi R, Rana M, Yameen D, Abid M, Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: molecular dynamic simulation, antibacterial and DNA binding studies. J Biomol Struct Dyn 2023; 41:13724-13751. [PMID: 36826451 DOI: 10.1080/07391102.2023.2179541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We have synthesized the pyrazole-bearing Schiff base derivatives (5a-5e) and (6a-6h) then the structural confirmation was supported by various spectral analyses. The antibacterial activity of all analogs was screened against bacterial strains Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonieae and Pseudomonas aeruginosa. In comparison to the reference drug ciprofloxacin, the lead analogs 5c and 6c showed potent activity, with MIC values of 64 µg/mL against E. coli and B. subtilis. Compound 5c showed a moderate effect with a MIC value of 128 µg/mL against B. subtilis, P. aeruginosa and K. pneumonieae, while compound 6c was against E. coli and P. aeruginosa. Furthermore, the compounds 5c and 6c displayed groove binding mode towards CT-DNA by absorption, emission, competitive fluorescence studies using EtBr, CD and time-resolved fluorescence studies. Thermodynamic parameters of analogs 5c and 6c with CT-DNA were also calculated at 298, 303 and 308K temperatures by UV-visible spectroscopy. The molecular docking studies give the docking score for all compounds with PDB codes: 1BNA and 2XCT. The MD simulation study of analogs 5c and 6c was also carried out. The pharmacokinetic and ADME properties were calculated for all of the synthesized analogs (5a-5e) and (6a-6h).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Wang JJ, Sun W, Jia WD, Bian M, Yu LJ. Research progress on the synthesis and pharmacology of 1,3,4-oxadiazole and 1,2,4-oxadiazole derivatives: a mini review. J Enzyme Inhib Med Chem 2022; 37:2304-2319. [PMID: 36000176 PMCID: PMC9423840 DOI: 10.1080/14756366.2022.2115036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Oxadiazole is a five-membered heterocyclic compound containing two nitrogen atoms and one oxygen atom. The 1,3,4-oxadiazole and 1,2,4-oxadiazole have favourable physical, chemical, and pharmacokinetic properties, which significantly increase their pharmacological activity via hydrogen bond interactions with biomacromolecules. In recent years, oxadiazole has been demonstrated to be the biologically active unit in a number of compounds. Oxadiazole derivatives exhibit antibacterial, anti-inflammatory, anti-tuberculous, anti-fungal, anti-diabetic and anticancer activities. In this paper, we report a series of compounds containing oxadiazole rings that have been published in the last three years only (2020-2022) as there was no report or their activities described in any article in 2019, which will be useful to scientists in research fields of organic synthesis, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Jing-Jing Wang
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wen Sun
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Wei-Dong Jia
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Ming Bian
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| | - Li-Jun Yu
- Institute of Pharmaceutical Chemistry and Pharmacology, Inner Mongolia Minzu University, Inner Mongolia Autonomous Region, Tongliao, PR China
- Inner Mongolia Key Laboratory of Mongolian Medicine Pharmacology for Cardio-Cerebral Vascular System, Inner Mongolia Autonomous Region, Tongliao, PR China
| |
Collapse
|
8
|
Sultana R, Arif R, Rana M, Ahmedi S, Mehandi R, Akrema, Manzoor N, Rahisuddin. Ni (II) detection by 2-amino-5-substituted-1,3,4-oxadiazole as a chemosensor using photo-physical method: Antifungal, antioxidant, DNA binding, and molecular docking studies. LUMINESCENCE 2022; 37:408-421. [PMID: 34986516 DOI: 10.1002/bio.4184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022]
Abstract
An oxadiazole derivative 2 was prepared by condensation reaction through cyclization of semicarbazone in the presence of bromine and the structural confirmation was supported by 1 H and 13 C NMR, FT-IR spectroscopy, and LC-MS spectrometry. Its sensing ability was examined towards Ni2+ ion with binding constant 1.04 x 105 over the other suitable metal cations (Ca2+ , Co2+ , Cr3+ , Ag+ , Pb2+ , Fe3+ , Mg2+ , and K+ ) by UV-visible and fluorescence spectroscopic studies and the minimum concentration of Ni2+ ion with LOD was found to be 9.4μM. Job's plot method gives the binding stoichiometry ratio of Ni2+ ion vs oxadiazole derivative 2 to be 2:1. Furthermore, the intercalative binding mode of oxadiazole derivative 2 with Calf Thymus DNA was supported by UV-Vis, fluorescence, viscosity, cyclic voltammetry, time-resolved fluorescence, and circular dichroism measurements. The molecular docking result gives the binding score for oxadiazole derivative 2 to be -6.5 kcal/mol, which further confirms the intercalative interaction. In addition, the anti-fungal activity of oxadiazole derivative 2 was also screened against fungal strains (C. albicans, C. glabrata, and C. tropicalis) by broth dilution and disc diffusion method. In the antioxidant studies, the oxadiazole derivative 2 showed potential scavenging activity against DPPH and H2 O2 free radicals.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Rizwan Arif
- Department of Chemistry, Lingayas Vidyapeeth, Faridabad, Haryana, India
| | - Manish Rana
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saiema Ahmedi
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rabiya Mehandi
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Akrema
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Nikhat Manzoor
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|