1
|
Spectroscopic, Anti-Cancer Activity, and DFT Computational Studies of Pt(II) Complexes with 1-Benzyl-3-phenylthiourea and Phosphine/Diamine Ligands. INORGANICS 2023. [DOI: 10.3390/inorganics11030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The reaction between [PtCl2(L-L)] (L-L = dppe, dppp, dppb, dppf, Phen and Bipy) or [PtCl2(PPh3)2] with 1-benzyl-3-phenylthiourea (H2BPT) in a basic medium (CHCl3/EtOH) created new coordinated square planner Pt(II) complexes with [Pt(BPT)(L-L)] (1–4,6,7) and [Pt(BPT)(PPh3)2] (5) types. These complexes were fully characterized by analytical and spectroscopic techniques (i.e., IR, UV. Vis., 1H, and 31P NMR). The results indicated that the thiourea derivative ligand act as a dianion ligand bonded through both S and N atoms in a chelating mode or as a mono-anion ligand coordinated through a sulfur atom with Pt(II) ion. Cytotoxicity activity was performed by the MTT assay to determine anti-cancer activities against MCF-7 breast cancer cells. The study indicated that IC50 values for MCF-7 cells were 10.96–78.90 µM. Additionally, the complexes [Pt(BPT)(dppe)] (1), [Pt(BPT)(PPh3)2] (5), and [Pt(BPT)2(Bipy)] (7) were investigated theoretically, where their quantum parameters were evaluated using the Gaussian 09 program using the theory of B3LYP/Def2TZVP//B3LYP/Lanl2dz. The calculation results confirmed the optimized structures of the complexes square planar geometry. However, the calculated bond lengths and angles showed a slightly distorted square planar geometry due to the trans influence of the sulfur atom. Additionally, complexes of [Pt(BPT)(dppe)] (1) and [Pt(BPT)(PPh3)2] (5) showed higher stability compared to [Pt(BPT)2(Bipy)] (7), which can be attributed to the higher back-donation of (1) and (5) complexes. Furthermore, among the three complexes, the [Pt(BPT)2(Bipy)] (7) complex possessed the lowest HOMO–LUMO gap, which may be a good candidate as the photo-catalyst material.
Collapse
|
2
|
Abdullah TB, Behjatmanesh-Ardakani R, Faihan AS, Jirjes HM, Abou-Krisha MM, Yousef TA, Kenawy SH, Al-Janabi ASM. Cd(II) and Pd(II) Mixed Ligand Complexes of Dithiocarbamate and Tertiary Phosphine Ligands-Spectroscopic, Anti-Microbial, and Computational Studies. Molecules 2023; 28:2305. [PMID: 36903550 PMCID: PMC10005262 DOI: 10.3390/molecules28052305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Mixed ligand complexes of Pd(II) and Cd(II) with N-picolyl-amine dithiocarbamate (PAC-dtc) as primary ligand and tertiary phosphine ligand as secondary ligands have been synthesized and characterized via elemental analysis, molar conductance, NMR (1H and 31P), and IR techniques. The PAC-dtc ligand displayed in a monodentate fashion via sulfur atom whereas diphosphine ligands coordinated as a bidentate mode to afford a square planner around the Pd(II) ion or tetrahedral around the Cd(II) ion. Except for complexes [Cd(PAC-dtc)2(dppe)] and [Cd(PAC-dtc)2(PPh3)2], the prepared complexes showed significant antimicrobial activity when evaluated against Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger. Moreover, DFT calculations were performed to investigate three complexes {[Pd(PAC-dtc)2(dppe)](1), [Cd(PAC-dtc)2(dppe)](2), [Cd(PAC-dtc)2(PPh3)2](7)}, and their quantum parameters were evaluated using the Gaussian 09 program at the B3LYP/Lanl2dz theoretical level. The optimized structures of the three complexes were square planar and tetrahedral geometry. The calculated bond lengths and bond angles showed a slightly distorted tetrahedral geometry for [Cd(PAC-dtc)2(dppe)](2) compared to [Cd(PAC-dtc)2(PPh3)2](7) due to the ring constrain in the dppe ligand. Moreover, the [Pd(PAC-dtc)2(dppe)](1) complex showed higher stability compared to Cd(2) and Cd(7) complexes which can be attributed to the higher back-donation of Pd(1) complex.
Collapse
Affiliation(s)
- Tohama B. Abdullah
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | | | - Ahmed S. Faihan
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | - Hayfa M. Jirjes
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| | - Mortaga M. Abou-Krisha
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Department of Chemistry, South Valley University, Qena 83523, Egypt
| | - Tarek A. Yousef
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Mansoura Laboratory, Toxic and Narcotic Drug, Forensic Medicine Department, Medicolegal Organization, Ministry of Justice, Cairo 11435, Egypt
| | - Sayed H. Kenawy
- Chemistry Department, Science College, Imam Mohammad Ibn Saud Islamic University, Riyadh 11623, Saudi Arabia
- Ceramics and Building Materials Department, National Research Centre, Refractories, El-Buhouth St., Dokki, Giza 12622, Egypt
| | - Ahmed S. M. Al-Janabi
- Department of Chemistry, College of Science, University of Tikrit, Tikrit 34001, Iraq
| |
Collapse
|
3
|
Synthesis, characterization, and x-ray crystallography of unexpected chloro-substitution on 1-(4-chlorophenyl)-3-phenylthiourea platinum(II) complex with tertiary phosphine ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Abdullah TB, Jirjes HM, Faihan AS, Al-Janabi AS. Spectroscopic, computational, anti-bacterial studies of bivalent metal complexes of N-picolyl-amine dithiocarbamate. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Al-Janabi AM, Faihan AS, Al-Mutairi AM, Hatshan MR, Al-Jibori SA, Al-Janabi AS. Spectroscopic, biological activity studies, and DFT calculations, of Pd(II) and Pt(II) complexes of 4-Methylene-3-phenyl-3,4-dihydroquinazoline-2(1H)-thione. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Synthesis, spectroscopic, anti-bacterial activity, molecular docking, ADMET, toxicity and DNA binding studies of divalent metal complexes of pyrazole-3-one azo ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Al-Mouqdady OD, Al-Janabi AS, Hatshan MR, Al-Jibori SA, Fiahan AS, Wagner C. Synthesis, characterization, anti-bacterial and anticancer activities of Palladium(II) mixed ligand complexes of 2-mercapto-5-methyl-1,3,4-thiadiazole (HmtzS) and phosphines. Crystal structure of [Pd(mtzS)2(dppf)].H2O.EtOH. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Synthesis and characterization of new HgS nanoparticles prepared by Hg(II)-triazole-3-thiol as precursor. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Eno EA, Louis H, Unimuke TO, Egemonye TC, Adalikwu SA, Agwupuye JA, Odey DO, Abu AS, Eko IJ, Ifeatu CE, Ntui TN. Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)asmino-4-(2,4-dichlorophenyl)thiazol-5-yl-diazenyl)phenyl as potential SARS-CoV-2 agent. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The synthesis of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)amino-4-(2,4 dichlorophenyl)thiazol-5-yl-diazenyl)phenyl is reported in this work with a detailed structural and molecular docking study on two SARS-COV-2 proteins: 3TNT and 6LU7. The studied compound has been synthesized by the condensation of cyanuric chloride with aniline and characterized with various spectroscopic techniques. The experimentally obtained spectroscopic data has been compared with theoretical calculated results achieved using high-level density functional theory (DFT) method. Stability, nature of bonding, and reactivity of the studied compound was evaluated at DFT/B3LYP/6-31 + (d) level of theory. Hyper-conjugative interaction persisting within the molecules which accounts for the bio-activity of the compound was evaluated from natural bond orbital (NBO) analysis. Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of the experimentally synthesized compound was studied to evaluate the pharmacological as well as in silico molecular docking against SARS-CoV-2 receptors. The molecular docking result revealed that the investigated compound exhibited binding affinity of −9.3 and −8.8 for protein 3TNT and 6LU7 respectively. In conclusion, protein 3TNT with the best binding affinity for the ligand is the most suitable for treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Ededet A. Eno
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - ThankGod C. Egemonye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Stephen A. Adalikwu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Diana O. Odey
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Biochemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| | - Abu Solomon Abu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Marine Biology, Faculty of Biology Sciences , University of Calabar , Calabar , Nigeria
| | - Ishegbe J. Eko
- Department of Polymer and Textile Engineering , Ahmadu Bello University Zaria , Kaduna , Nigeria
| | - Chukwudubem E. Ifeatu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - Tabe N. Ntui
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Chemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| |
Collapse
|
10
|
Deghadi RG, Mohamed GG, Mahmoud NF. Bioactive La (III), Er (III), Yb (III), Ru (III) and Ta(V) Complexes of New Organometallic Schiff Base: Preparation, Structural Characterization, Antibacterial, Anticancer activities and MOE Studies. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Reem G. Deghadi
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| | - Nessma F. Mahmoud
- Chemistry Department, Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
11
|
Faihan AS, Al-Jibori SA, Al-Janabi AS. Novel base-free dianion complexes of Pt(II) and Pd(II) derived from heterocyclic thiourea and tertiary phosphine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Spectroscopic, antibacterial and anti-cancer studies of new platinum(II)-diethyldithiocarbamate mixed ligand complexes with phosphine or amine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Promising bio-active complexes of platinum(II) and palladium(II) derived from heterocyclic thiourea: Synthesis, characterization, DFT, molecular docking, and anti-cancer studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Faihan AS, Al-Jibori SA, Hatshan MR, Al-Janabi AS. Antibacterial, spectroscopic and X-ray crystallography of newly prepared heterocyclic thiourea dianion platinum(II) complexes with tertiary phosphine ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|