1
|
Tai Y, Yang B, Li J, Meng L, Xing P, Wang S. Design and Preparation of Heterostructured Cu 2O/TiO 2 Materials for Photocatalytic Applications. Molecules 2024; 29:5028. [PMID: 39519669 PMCID: PMC11547863 DOI: 10.3390/molecules29215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The extensive use of fossil fuels has sped up the global development of the world economy and is accompanied by significant problems, such as energy shortages and environmental pollution. Solar energy, an inexhaustible and clean energy resource, has emerged as a promising sustainable alternative. Light irradiation can be transformed into electrical/chemical energy, which can be used to remove pollutants or transform contaminants into high-value-added chemicals through photocatalytic reactions. Therefore, photocatalysis is a promising strategy to overcome the increasing energy and environmental problems. As is well-known, photocatalysts are key components of photocatalytic systems. Among the widely investigated photocatalysts, titanium dioxide (TiO2) has attracted great attention owing to its excellent light-driven redox capability and photochemical stability. However, its poor solar light response and rapid recombination of electron-hole pairs limit its photocatalytic applications. Therefore, strategies to enhance the photocatalytic activity of TiO2 by narrowing its bandgap and inhibiting the recombination of charges have been widely accepted. Constructing heterojunctions with other components, including cuprous oxide (Cu2O), has especially narrowed the bandgap, providing a promising means of solving the present challenges. This paper reviews the advances in research on heterostructured Cu2O/TiO2 photocatalysts, such as their synthesis methods, mechanisms for the enhancement of photocatalytic performance, and their applications in hydrogen production, CO2 reduction, selective synthesis, and the degradation of pollutants. The mechanism of charge separation and transfer through the Cu2O/TiO2 heterojunctions and the inherent factors that lead to the enhancement of photocatalytic performance are extensively discussed. Additionally, the current challenges in and future perspectives on the use of heterostructured Cu2O/TiO2 photocatalysts are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (Y.T.); (B.Y.); (J.L.); (L.M.); (P.X.)
| |
Collapse
|
2
|
Zindrou A, Deligiannakis Y. Quantitative In Situ Monitoring of Cu-Atom Release by Cu 2O Nanocatalysts under Photocatalytic CO 2 Reduction Conditions: New Insights into the Photocorrosion Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111773. [PMID: 37299676 DOI: 10.3390/nano13111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cu2O is among the most promising photocatalysts for CO2 reduction, however its photocorrosion remains a standalone challenge. Herein, we present an in situ study of the release of Cu ions from Cu2O nanocatalysts under photocatalytic conditions in the presence of HCO3 as a catalytic substrate in H2O. The Cu-oxide nanomaterials were produced by Flame Spray Pyrolysis (FSP) technology. Using Electron Paramagnetic Resonance (EPR) spectroscopy in tandem with analytical Anodic Stripping Voltammetry (ASV), we monitored in situ the Cu2+ atom release from the Cu2O nanoparticles in comparison with CuO nanoparticles under photocatalytic conditions. Our quantitative, kinetic data show that light has detrimental effect on the photocorrosion of Cu2O and ensuing Cu2+ ion release in the H2O solution, up to 15.7% of its mass. EPR reveals that HCO3 acts as a ligand of the Cu2+ ions, promoting the liberation of {HCO3-Cu} complexes in solution from Cu2O, up to 27% of its mass. HCO3 alone exerted a marginal effect. XRD data show that under prolonged irradiation, part of Cu2+ ions can reprecipitate on the Cu2O surface, creating a passivating CuO layer that stabilizes the Cu2O from further photocorrosion. Including isopropanol as a hole scavenger has a drastic effect on the photocorrosion of Cu2O nanoparticles and suppresses the release of Cu2+ ions to the solution. Methodwise, the present data exemplify that EPR and ASV can be useful tools to help quantitatively understand the solid-solution interface photocorrosion phenomena for Cu2O.
Collapse
Affiliation(s)
- Areti Zindrou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
3
|
Psathas P, Zindrou A, Papachristodoulou C, Boukos N, Deligiannakis Y. In Tandem Control of La-Doping and CuO-Heterojunction on SrTiO 3 Perovskite by Double-Nozzle Flame Spray Pyrolysis: Selective H 2 vs. CH 4 Photocatalytic Production from H 2O/CH 3OH. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030482. [PMID: 36770444 PMCID: PMC9920848 DOI: 10.3390/nano13030482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 06/12/2023]
Abstract
ABO3 perovskites offer versatile photoactive nano-templates that can be optimized towards specific technologies, either by means of doping or via heterojunction engineering. SrTiO3 is a well-studied perovskite photocatalyst, with a highly reducing conduction-band edge. Herein we present a Double-Nozzle Flame Spray Pyrolysis (DN-FSP) technology for the synthesis of high crystallinity SrTiO3 nanoparticles with controlled La-doping in tandem with SrTiO3/CuO-heterojunction formation. So-produced La:SrTiO3/CuO nanocatalysts were optimized for photocatalysis of H2O/CH3OH mixtures by varying the La-doping level in the range from 0.25 to 0.9%. We find that, in absence of CuO, the 0.9La:SrTiO3 material achieved maximal efficient photocatalytic H2 production, i.e., 12 mmol g-1 h-1. Introduction of CuO on La:SrTiO3 enhanced selective production of methane CH4. The optimized 0.25La:SrTiO3/0.5%CuO catalyst achieved photocatalytic CH4 production of 1.5 mmol g-1 h-1. Based on XRD, XRF, XPS, BET, and UV-Vis/DRS data, we discuss the photophysical basis of these trends and attribute them to the effect of La atoms in the SrTiO3 lattice regarding the H2-production, plus the effect of interfacial CuO on the promotion of CH4 production. Technology-wise this work is among the first to exemplify the potential of DN-FSP for scalable production of complex nanomaterials such as La:SrTiO3/CuO with a diligent control of doping and heterojunction in a single-step synthesis.
Collapse
Affiliation(s)
- Pavlos Psathas
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Areti Zindrou
- Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | | | - Nikos Boukos
- Institute of Nanoscience and Nanotechnology (INN), NCSR Demokritos, 15310 Athens, Greece
| | | |
Collapse
|
4
|
Kurenkova AY, Yakovleva AY, Saraev AA, Gerasimov EY, Kozlova EA, Kaichev VV. Copper-Modified Titania-Based Photocatalysts for the Efficient Hydrogen Production under UV and Visible Light from Aqueous Solutions of Glycerol. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3106. [PMID: 36144894 PMCID: PMC9504562 DOI: 10.3390/nano12183106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
In this study, we have proposed titania-based photocatalysts modified with copper compounds for hydrogen evolution. Thermal pre-treatment of commercial TiO2 Degussa P25 (DTiO2) and Hombifine N (HTiO2) in the range from 600 to 800 °C was carried out followed by the deposition of copper oxides (1-10 wt. % of Cu). The morphology and chemical state of synthesized photocatalysts were studied using X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and XANES/EXAFS X-ray absorption spectroscopy. Photocatalytic activity was tested in the hydrogen evolution from aqueous solutions of glycerol under ultraviolet (λ = 381 nm) and visible (λ = 427 nm) light. The photocatalysts 2% CuOx/DTiO2 T750 and 5% CuOx/DTiO2 T700 showed the highest activity under UV irradiation (λ = 380 nm), with the rate of H2 evolution at the level of 2.5 mmol (H2) g-1 h-1. Under the visible light irradiation (λ = 427 nm), the highest activity of 0.6 mmol (H2) g-1 h-1 was achieved with the 5% CuOx/DTiO2 T700 photocatalyst. The activity of these photocatalysts is 50% higher than that of the platinized 1% Pt/DTiO2 sample. Thus, it was shown for the first time that a simple heat treatment of a commercial titanium dioxide in combination with a deposition of non-noble metal particles led to a significant increase in the activity of photocatalysts and made it possible to obtain materials that were active in hydrogen production under visible light irradiation.
Collapse
Affiliation(s)
- Anna Yu. Kurenkova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Anastasiya Yu. Yakovleva
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
- Department of Natural Science, Novosibirsk State University, Pirogova St. 1, 630090 Novosibirsk, Russia
| | - Andrey A. Saraev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Evgeny Yu. Gerasimov
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Ekaterina A. Kozlova
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| | - Vasily V. Kaichev
- Federal Research Center, Boreskov Institute of Catalysis SB RAS, Lavrentieva Ave. 5, 630090 Novosibirsk, Russia
| |
Collapse
|
5
|
Facile ball-milling synthesis of WO3/g-C3N4 heterojunction for photocatalytic degradation of Rhodamine B. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
6
|
Heiba ZK, Mohamed MB, Badawi A. Structural and Optical Characteristic of Cu-Doped TiO2 Thin Film. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
First modification strategy: Ester is better than acid to improve the activity of photocatalyst nano-TiO2. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
8
|
Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022. [DOI: 10.3390/catal12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Collapse
|
9
|
Ma Y, Wei X, Aishanjiang K, Fu Y, Le J, Wu H. Boosting the photocatalytic performance of Cu 2O for hydrogen generation by Au nanostructures and rGO nanosheets. RSC Adv 2022; 12:31415-31423. [DOI: 10.1039/d2ra04132d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
Au@Cu2O/rGO exhibited boosting photocatalytic performance due to the yolk–shelled structure, abundant hot charges on Au, and quick charge transfer by rGO.
Collapse
Affiliation(s)
- Yujie Ma
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xindong Wei
- ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, 201203, China
| | - Kedeerya Aishanjiang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yi Fu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Jiamei Le
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hailong Wu
- Collaborative Innovation Center for Biomedicine, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| |
Collapse
|