1
|
Yelamanda Rao K, Chandran R, Dileep KV, Gorantla SC, Jeelan Basha S, Mothukuru S, Siva Kumar I, Vamsi K, Kumar S, Reddy ABM, Subramanyam R, Damu AG. Quinazolinone-Hydrazine Cyanoacetamide Hybrids as Potent Multitarget-Directed Druggable Therapeutics against Alzheimer's Disease: Design, Synthesis, and Biochemical, In Silico, and Mechanistic Analyses. ACS Chem Neurosci 2024; 15:3401-3420. [PMID: 39235838 DOI: 10.1021/acschemneuro.4c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
The discovery of effective multitarget-directed ligands (MTDLs) against multifactorial Alzheimer's disease (AD) remnants has been focused in an incessant drug discovery pursuit. In this perception, the current study explores the rational design, synthesis, and evaluation of 26 quinazolinone-hydrazine cyanoacetamide hybrids 7(a-j), 8(a-j), and 9(a-f) as MTDLs against AD. These new compounds were synthesized in four-step processes using simple phthalimide as the starting material without any major workup procedures and were characterized by different spectroscopic techniques. In Ellman's assay, the most potent analogues 7i, 8j, and 9d were identified as selective and mixed-type inhibitors of hAChE. Furthermore, biophysical and computational assessments revealed that the analogues 7i, 8j, and 9d were bound to both the catalytic active site and peripheral anionic site of hAChE with high affinity. The molecular dynamics simulation analysis highlighted the conformational changes of hAChE upon binding of 7i, 8j, and 9d and also the stability of resulting biomolecular systems all over 100 ns simulations. In addition to antioxidant activity, the most active congeners were found to protect substantially SK-N-SH cells from oxidative damage. Decisively, the most active analogues 7i, 8j, and 9d were assessed as potent Aβ1-42 fibril modulators and protective agents against Aβ1-42-induced toxicity in SH-SY5Y cells. Additionally, glioblastoma C6 cell-based assays also demonstrated the use of the most active congeners 7i, 8j, and 9d as protective agents against Aβ1-42-induced toxicity. Overall, this multifunctional capacity of quinazolinone-hydrazine cyanoacetamide hybrids demonstrated the noteworthy potential of these hybrids to develop as effectual MTDLs against AD. However, further pharmacokinetics, toxicology, and behavioral studies are warranted.
Collapse
Affiliation(s)
- Kandrakonda Yelamanda Rao
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Remya Chandran
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - K V Dileep
- Laboratory for Computational and Structural Biology, Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala 680005, India
| | - Sri Charitha Gorantla
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Shaik Jeelan Basha
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
- Department of Chemistry, Santhiram Engineering College (Autonomous), Nandyal, Andhra Pradesh 518501, India
| | - Sreelakshmi Mothukuru
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Irla Siva Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
| | - Katta Vamsi
- Department of Chemistry, Indian Institute of Science and Education Research (IISER), Tirupati, Andhra Pradesh 517507, India
| | - Sandeep Kumar
- Soft Condensed Matter, Raman Research Institute, CV Raman Avenue, Sadashiva Nagar, Bangalore 560080, India
- Nitte Meenakshi Institute of Technology, Yelahanka, Bangalore 560064, India
| | - Aramati Bindu Madhava Reddy
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Amooru Gangaiah Damu
- Bioorganic Chemistry Research Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| |
Collapse
|
2
|
Ghorai S, Dasgupta S, Mukherjee A, Barui A, Roymahapatra G, Ganguly J. An Integrated Polysaccharide Hydrogel with Versatile Fluorescence Responses through Noncovalent Reformation of Gel Aggregation and for Bioimaging. ACS APPLIED BIO MATERIALS 2024; 7:5640-5650. [PMID: 39094036 DOI: 10.1021/acsabm.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Functionalized hydrogels, with their unique and adaptable structures, have attracted significant attention in materials and biomaterials research. Fluorescent hydrogels are particularly noteworthy for their sensing capabilities and ability to mimic cellular matrices, facilitating cell infiltration and tracking of drug delivery. Structural elucidation of hydrogels is crucial for understanding their responses to stimuli such as the pH, temperature, and solvents. This study developed a fluorescent hydrogel by functionalizing chitosan with p-cresol-based quinazolinone aldehyde. Confocal microscopy revealed the hydrogel's intriguing fluorogenic properties. The hydrogel exhibited enhanced fluorescence and a tunable network morphology, influenced by the THF-water ratio. The study investigated the control of gel network reformation in different media and analyzed the fluorescence responses and structural changes of the sugar backbone and fluorophore. Proper selection of mixed solvents is essential for optimizing the hydrogel as a fluorescence probe for bioimaging. This hydrogel demonstrated greater swelling properties, making it highly suitable for drug delivery applications.
Collapse
Affiliation(s)
- Shubhankar Ghorai
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Animesh Mukherjee
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Ananya Barui
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| | - Gourisankar Roymahapatra
- School of Applied Science and Humanities, Haldia Institute of Technology, Haldia, West Bengal 721657, India
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, W.B. 711103, India
| |
Collapse
|
3
|
Pele R, Marc G, Mogoșan C, Apan A, Ionuț I, Tiperciuc B, Moldovan C, Araniciu C, Oniga I, Pîrnău A, Vlase L, Oniga O. Synthesis, In Vivo Anticonvulsant Activity Evaluation and In Silico Studies of Some Quinazolin-4(3H)-One Derivatives. Molecules 2024; 29:1951. [PMID: 38731442 PMCID: PMC11085150 DOI: 10.3390/molecules29091951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Two series, "a" and "b", each consisting of nine chemical compounds, with 2,3-disubstituted quinazolin-4(3H)-one scaffold, were synthesized and evaluated for their anticonvulsant activity. They were investigated as dual potential positive allosteric modulators of the GABAA receptor at the benzodiazepine binding site and inhibitors of carbonic anhydrase II. Quinazolin-4(3H)-one derivatives were evaluated in vivo (D1-3 = 50, 100, 150 mg/kg, administered intraperitoneally) using the pentylenetetrazole (PTZ)-induced seizure model in mice, with phenobarbital and diazepam, as reference anticonvulsant agents. The in silico studies suggested the compounds act as anticonvulsants by binding on the allosteric site of GABAA receptor and not by inhibiting the carbonic anhydrase II, because the ligands-carbonic anhydrase II predicted complexes were unstable in the molecular dynamics simulations. The mechanism targeting GABAA receptor was confirmed through the in vivo flumazenil antagonism assay. The pentylenetetrazole experimental anticonvulsant model indicated that the tested compounds, 1a-9a and 1b-9b, present a potential anticonvulsant activity. The evaluation, considering the percentage of protection against PTZ, latency until the onset of the first seizure, and reduction in the number of seizures, revealed more favorable results for the "b" series, particularly for compound 8b.
Collapse
Affiliation(s)
- Raluca Pele
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Mogoșan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Anamaria Apan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 6A Louis Pasteur Street, 400349 Cluj-Napoca, Romania;
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| | - Cătălin Araniciu
- Department of Therapeutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă, 400010 Cluj-Napoca, Romania;
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj-Napoca, Romania;
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (R.P.); (G.M.); (I.I.); (B.T.); (C.M.); (O.O.)
| |
Collapse
|
4
|
Wang Y, Huang Y, Li Y, Li K, Luo Z. A TEMPO promoted tandem reaction of 2-aminobenzophenones and benzylamines under electrochemical conditions. Org Biomol Chem 2024; 22:1983-1987. [PMID: 38358360 DOI: 10.1039/d4ob00037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
This study describes the efficient synthesis of quinazolines promoted by TEMPO via electro-catalysis with 2-aminobenzophenones and benzylamines. The method exhibited remarkable chemoselectivity under mild reaction conditions. A series of quinazolines could be obtained in moderate to good yields. In addition, control experiments were carried out to verify the reaction mechanism. Furthermore, the synthesis on the gram scale was conducted successfully to give the target product.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yekai Huang
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Yanan Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Kuiliang Li
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| | - Zaigang Luo
- School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan 232001, China.
| |
Collapse
|
5
|
Lee S, Dao PDQ, Lim HJ, Cho CS. Recyclable Magnetic Cu-MOF-74-Catalyzed C(sp 2)-N Coupling and Cyclization under Microwave Irradiation: Synthesis of Imidazo[1,2- c]quinazolines and Their Analogues. ACS OMEGA 2023; 8:16218-16227. [PMID: 37179653 PMCID: PMC10173347 DOI: 10.1021/acsomega.3c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/06/2023] [Indexed: 05/15/2023]
Abstract
Magnetic Cu-MOF-74 (Fe3O4@SiO2@Cu-MOF-74) was synthesized for the first time by grafting MOF-74 (copper as the metal center) on the surface of core-shell magnetic carboxyl-functionalized silica gel (Fe3O4@SiO2-COOH), which was prepared by coating core Fe3O4 nanoparticles with hydrolyzed 2-(3-(triethoxysilyl)propyl)succinic anhydride and tetraethyl orthosilicate. The structure of Fe3O4@SiO2@Cu-MOF-74 nanoparticles was characterized by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4@SiO2@Cu-MOF-74 nanoparticles could be applied as a recyclable catalyst to the synthesis of N-fused hybrid scaffolds. 2-(2-Bromoaryl)imidazoles and 2-(2-bromovinyl)imidazoles were coupled and cyclized with cyanamide in DMF in the presence of a catalytic amount of Fe3O4@SiO2@Cu-MOF-74 along with a base to give imidazo[1,2-c]quinazolines and imidazo[1,2-c]pyrimidines, respectively, in good yields. The Fe3O4@SiO2@Cu-MOF-74 catalyst could be easily recovered by a super magnetic bar and recycled more than four times while almost maintaining catalytic activity.
Collapse
Affiliation(s)
- Seong
Weon Lee
- Department
of Applied Chemistry, Kyungpook National
University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Pham Duy Quang Dao
- Department
of Applied Chemistry, Kyungpook National
University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Ho-Jin Lim
- Department
of Environmental Engineering, Kyungpook
National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Chan Sik Cho
- Department
of Applied Chemistry, Kyungpook National
University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
In silico studies, X-ray diffraction analysis and biological investigation of fluorinated pyrrolylated-chalcones in zebrafish epilepsy models. Heliyon 2023; 9:e13685. [PMID: 36852036 PMCID: PMC9958447 DOI: 10.1016/j.heliyon.2023.e13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
Epilepsy is the third most common known brain disease worldwide. Several antiepileptic drugs (AEDs) are available to improve seizure control. However, the associated side effects limit their practical use and highlight the ongoing search for safer and effective AEDs. Eighteen newly designed fluorine-containing pyrrolylated chalcones were extensively studied in silico, synthesized, structurally analyzed by X-ray diffraction (XRD), and biologically and toxicologically tested as potential new AEDs in zebrafish epilepsy in vivo models. The results predicted that 3-(3,5-difluorophenyl)-1-(1H-pyrrol-2-yl)prop-2-en-1-one (compound 8) had a good drug-like profile with binding affinity to γ-aminobutyric acid receptor type-A (GABAA, -8.0 kcal/mol). This predicted active compound 8 was effective in reducing convulsive behaviour in pentylenetetrazol (PTZ)-induced larvae and hyperactive movements in zc4h2 knockout (KO) zebrafish, experimentally. Moreover, no cardiotoxic effect of compound 8 was observed in zebrafish. Overall, pyrrolylated chalcones could serve as alternative AEDs and warrant further in-depth pharmacological studies to uncover their mechanism of action.
Collapse
|
7
|
Monteiro MC, Winiarski JP, Santana ER, Szpoganicz B, Vieira IC. Ratiometric Electrochemical Sensor for Butralin Determination Using a Quinazoline-Engineered Prussian Blue Analogue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16031024. [PMID: 36770031 PMCID: PMC9919488 DOI: 10.3390/ma16031024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
A ratiometric electrochemical sensor based on a carbon paste electrode modified with quinazoline-engineered ZnFe Prussian blue analogue (PBA-qnz) was developed for the determination of herbicide butralin. The PBA-qnz was synthesized by mixing an excess aqueous solution of zinc chloride with an aqueous solution of precursor sodium pentacyanido(quinazoline)ferrate. The PBA-qnz was characterized by spectroscopic and electrochemical techniques. The stable signal of PBA-qnz at +0.15 V vs. Ag/AgCl, referring to the reduction of iron ions, was used as an internal reference for the ratiometric sensor, which minimized deviations among multiple assays and improved the precision of the method. Furthermore, the PBA-qnz-based sensor provided higher current responses for butralin compared to the bare carbon paste electrode. The calibration plot for butralin was obtained by square wave voltammetry in the range of 0.5 to 30.0 µmol L-1, with a limit of detection of 0.17 µmol L-1. The ratiometric sensor showed excellent precision and accuracy and was applied to determine butralin in lettuce and potato samples.
Collapse
|
8
|
2,3-Dihydro-Quinazolin-4(1H)-One as a Fluorescent Sensor for Hg 2+ Ion and its Docking Studies in Cancer Treatment. CHEMISTRY-DIDACTICS-ECOLOGY-METROLOGY 2022. [DOI: 10.2478/cdem-2022-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The 2,3-dihydro-quinazolin-4(1H)-one was synthesised via the deployment of SBA-Pr-SO3H and its application was explored as a highly selective fluorescent sensor for Hg2+ ion; fluorescence intensity was decreased selectively by Hg2+ ions. Furthermore, this compound also indicated for its superb anti-interference ability among other ions. It is important to mention that this compound could be employed to detect a very low amount of Hg2+ ions, which are highly toxic and general contaminants. The docking study shows that the molecule, 2,3-dihydro-quinazolin-4(1H)-one, is a good inhibitor for the 5ACC enzyme.
Collapse
|
9
|
Galehban MH, Zeynizadeh B, Mousavi H. Introducing Fe3O4@SiO2@KCC-1@MPTMS@CuII catalytic applications for the green one-pot syntheses of 2-aryl(or heteroaryl)-2,3-dihydroquinazolin-4(1H)-ones and 9-aryl-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-diones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Khabnadideh S, Solhjoo A, Heidari R, Amiri Zirtol L, Sakhteman A, Rezaei Z, Babaei E, Rahimi S, Emami L. Efficient synthesis of 1,3-naphtoxazine derivatives using reusable magnetic catalyst (GO-Fe 3O 4-Ti (IV)): anticonvulsant evaluation and computational studies. BMC Chem 2022; 16:44. [PMID: 35689296 PMCID: PMC9188075 DOI: 10.1186/s13065-022-00836-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/30/2022] [Indexed: 12/29/2022] Open
Abstract
A series of 2-aryl/alkyl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazines (S1-S11) were synthesized with an eco-friendly and recoverable nanocatalyst (GO-Fe3O4-Ti(IV)) as an efficient magnetic composite. The new nanocatalyst was characterized by FT-IR, XRD and, EDS analysis. A conformable procedure, easy to work up and having a short reaction time with high yields are some advantages of this method. The new catalyst is also thermal-stable, reusable and, environment-friendly. The chemical structures of the synthesized 1,3-oxazine compounds were confirmed by comparing their melting points with those reported in literature. Then, the anticonvulsant activity of these compounds was assessed by the intraperitoneal pentylenetetrazole test (ipPTZ). Compounds S10 and S11 displayed considerable activity against chemically-induced seizure tests. The molecular simulation was also done to achieve their binding affinities as γ-aminobutyric acid A (GABA-A) receptor agonists as an assumptive mechanism of their anticonvulsant action. The result of molecular studies represented strongly matched with biological activity. Molecular docking simulation of the potent compound (S10) and diazepam as the positive control was performed and some critical residues like Thr262, Asn265, Met286, Phe289, and Val290 were identified. Based on the anticonvulsant results and also in silico ADME predictions, S11 can be to become a potential drug candidate as an anticonvulsant agent.
Collapse
Affiliation(s)
- Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Solhjoo
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Amiri Zirtol
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amirhossein Sakhteman
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elaheh Babaei
- Department of Chemistry, College of Science, Yazd University, Yazd, Iran
| | - Samaneh Rahimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Moreira NM, dos Santos JRN, Correa A. Greener Synthesis of Pyrroloquinazoline Derivatives: Recent Advances. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Natália Menezes Moreira
- Federal University of Sao Carlos: Universidade Federal de Sao Carlos Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Jhonathan Renner Nunes dos Santos
- Federal University of Sao Carlos Sciences and Technology Centre: Universidade Federal de Sao Carlos Centro de Ciencias Exatas e de Tecnologia Chemistry Rodovia Washington Luis km 235 13565-905 São Carlos BRAZIL
| | - Arlene Correa
- Federal University of São Carlos Chemistry Via Washington Luis km 235 13565-905 São Carlos BRAZIL
| |
Collapse
|
12
|
Synthesis, molecular modelling study of the methaqualone analogues as anti-convulsant agent with improved cognition activity and minimized neurotoxicity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131972] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Cheke RS, Patil VM, Firke SD, Ambhore JP, Ansari IA, Patel HM, Shinde SD, Pasupuleti VR, Hassan MI, Adnan M, Kadri A, Snoussi M. Therapeutic Outcomes of Isatin and Its Derivatives against Multiple Diseases: Recent Developments in Drug Discovery. Pharmaceuticals (Basel) 2022; 15:ph15030272. [PMID: 35337070 PMCID: PMC8950263 DOI: 10.3390/ph15030272] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/29/2022] [Accepted: 01/30/2022] [Indexed: 12/22/2022] Open
Abstract
Isatin (1H indole 2, 3-dione) is a heterocyclic, endogenous lead molecule recognized in humans and different plants. The isatin nucleus and its derivatives are owed the attention of researchers due to their diverse pharmacological activities such as anticancer, anti-TB, antifungal, antimicrobial, antioxidant, anti-inflammatory, anticonvulsant, anti-HIV, and so on. Many research chemists take advantage of the gentle structure of isatins, such as NH at position 1 and carbonyl functions at positions 2 and 3, for designing biologically active analogues via different approaches. Literature surveys based on reported preclinical, clinical, and patented details confirm the multitarget profile of isatin analogues and thus their importance in the field of medicinal chemistry as a potent chemotherapeutic agent. This review represents the recent development of isatin analogues possessing potential pharmacological action in the years 2016–2020. The structure–activity relationship is also discussed to provide a pharmacophoric pattern that may contribute in the future to the design and synthesis of potent and less toxic therapeutics.
Collapse
Affiliation(s)
- Rameshwar S. Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
- Correspondence: (R.S.C.); (V.R.P.)
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, Uttar Pradesh, India;
| | - Sandip D. Firke
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Jaya P. Ambhore
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, Maharashtra, India;
| | - Iqrar A. Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, Maharashtra, India; (S.D.F.); (I.A.A.); (H.M.P.)
| | - Sachin D. Shinde
- Department of Pharmacology, Shri. R. D. Bhakt College of Pharmacy, Jalna 431213, Maharashtra, India;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu 44800, Sabah, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Riau, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore 560064, Karnataka, India
- Correspondence: (R.S.C.); (V.R.P.)
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India;
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia;
- Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Ha′il 2440, Saudi Arabia; (M.A.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| |
Collapse
|