1
|
Marufa SS, Rahman T, Rahman MM, Rahman MM, Khan SJ, Jahan R, Nishino H, Alam MS, Haque MA. Design, synthesis, molecular docking, and dynamics studies of novel thiazole-Schiff base derivatives containing a fluorene moiety and the assessment of their antimicrobial and antioxidant activity. RSC Adv 2024; 14:35198-35214. [PMID: 39497776 PMCID: PMC11533417 DOI: 10.1039/d4ra04197f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/18/2024] [Indexed: 11/07/2024] Open
Abstract
In this study, a series of eighteen fluorene-containing substituted thiazole derivatives were synthesized and characterized via spectral analyses. The proposed compounds were screened for their in vitro antimicrobial activity, and it was found that compound 2a displayed a significant zone of inhibition (20.3 ± 0.6 mm) against B. subtilis and compound 2b exhibited inhibitory activity (30.3 ± 0.6 mm) against a C. albicans fungal strain. Furthermore, antioxidant activity was evaluated for all analogues, where 2f exhibited a four-fold higher antioxidant capability (11.73 ± 1.22 μg mL-1) than the standard ascorbic acid. Oral bioavailability and toxicological parameters were considered, and most of the compounds satisfied Lipinski's rule of five and Veber's rule, except for one violation by a few derivatives. Molecular docking and molecular dynamics simulation were performed, providing more explicit ideas on the binding interaction and stability of compounds that exhibited wet lab activity. Average RMSD and RMSF values ranged between 0.5 Å and 2.5 Å, which indicated the stability of ligands inside the complex, yielding some engrossing insights.
Collapse
Affiliation(s)
- Sumita Saznin Marufa
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Tasnim Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Mohammad Mostafizur Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Md Mizanur Rahman
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Samira Jarin Khan
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Rownok Jahan
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Hiroshi Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University Kumamoto Japan
| | - Mohammad Sayed Alam
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| | - Md Aminul Haque
- Department of Chemistry, Jagannath University Dhaka 1100 Bangladesh +880-027113752 +880-029583794 +88-01711287600
| |
Collapse
|
2
|
Al-Humaidi JY, Albedair LA, Maliwal D, Zaki MEA, Al-Hussain SA, Pissurlenkar R, Mukhrish YE, Abolibda TZ, Gomha SM. Synthesis and Molecular Docking of Curcumin-Derived Pyrazole-Thiazole Hybrids as Potent α-Glucosidase Inhibitors. Chem Biodivers 2024:e202401766. [PMID: 39440719 DOI: 10.1002/cbdv.202401766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
α-Glucosidase inhibitors are critical for diabetes management, with pyrazoles and thiazoles emerging as effective options. This research highlights curcumin-based pyrazole-thiazole hybrids as potential inhibitors, synthesizing derivatives and evaluating their inhibitory capabilities. The study involved the synthesis of novel compounds using hydrazonoyl halides, confirmed through elemental and spectral analyses. The synthesized derivatives exhibited significant α-glucosidase inhibition, with IC50 values ranging from 3.37±0.25 to 16.35±0.37 μM. Among them, compound 7e demonstrated the strongest inhibition at 3.37±0.25 μM, outperforming the standard drug acarbose (IC50=5.36±0.31 μM). In silico assessments and molecular docking using AutoDock Vina revealed strong interactions, particularly with compounds 7b, 7e, 7f, and 7g, indicating their potential as stable and effective inhibitors. The results suggest that the synthesized pyrazole-thiazole hybrids hold promise as novel therapeutic agents for diabetes, warranting further exploration of their substituent effects for optimized inhibitor design.
Collapse
Affiliation(s)
- Jehan Y Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Lamia A Albedair
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh, 11671, Saudi Arabia
| | - Deepika Maliwal
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Raghuvir Pissurlenkar
- Department of Pharmaceutical Chemistry, Goa College of Pharmacy, Panaji Goa, 403001, India
| | - Yousef E Mukhrish
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Tariq Z Abolibda
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| | - Sobhi M Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
| |
Collapse
|
3
|
Zelelew D, Endale M, Melaku Y, Geremew T, Eswaramoorthy R, Tufa LT, Choi Y, Lee J. Ultrasonic-Assisted Synthesis of Heterocyclic Curcumin Analogs as Antidiabetic, Antibacterial, and Antioxidant Agents Combined with in vitro and in silico Studies. Adv Appl Bioinform Chem 2023; 16:61-91. [PMID: 37533689 PMCID: PMC10392906 DOI: 10.2147/aabc.s403413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023] Open
Abstract
Background Heterocyclic analogs of curcumin have a wide range of therapeutic potential and the ability to control the activity of a variety of metabolic enzymes. Methods 1H-NMR and 13C-NMR spectroscopic techniques were used to determine the structures of synthesized compounds. The agar disc diffusion method and α-amylase inhibition assay were used to examine the antibacterial and anti-diabetic potential of the compounds against α-amylase enzyme inhibitory activity, respectively. DPPH-free radical scavenging and lipid peroxidation inhibition assays were used to assess the in vitro antioxidant potential. Results and Discussion In this work, nine heterocyclic analogs derived from curcumin precursors under ultrasonic irradiation were synthesized in excellent yields (81.4-93.7%) with improved reaction time. Results of antibacterial activities revealed that compounds 8, and 11 displayed mean inhibition zone of 13.00±0.57, and 19.66±00 mm, respectively, compared to amoxicillin (12.87±1.41 mm) at 500 μg/mL against E. coli, while compounds 8, 11 and 16 displayed mean inhibition zone of 17.67±0.57, 14.33±0.57 and 23.33±00 mm, respectively, compared to amoxicillin (13.75±1.83 mm) at 500 μg/mL against P. aeruginosa. Compound 11 displayed a mean inhibition zone of 11.33±0.57 mm compared to amoxicillin (10.75±1.83 mm) at 500 μg/mL against S. aureus. Compound 11 displayed higher binding affinities of -7.5 and -8.3 Kcal/mol with penicillin-binding proteins (PBPs) and β-lactamases producing bacterial strains, compared to amoxicillin (-7.2 and -7.9 Kcal/mol, respectively), these results are in good agreement with the in vitro antibacterial activities. In vitro antidiabetic potential on α-amylase enzyme revealed that compounds 11 (IC50=7.59 µg/mL) and 16 (IC50=4.08 µg/mL) have higher inhibitory activities than acarbose (IC50=8.0 µg/mL). Compound 8 showed promising antioxidant inhibition efficacy of DPPH (IC50 = 2.44 g/mL) compared to ascorbic acid (IC50=1.24 g/mL), while compound 16 revealed 89.9±20.42% inhibition of peroxide generation showing its potential in reducing the development of lipid peroxides. In silico molecular docking analysis, results are in good agreement with in vitro biological activity. In silico ADMET profiles suggested the adequate oral drug-likeness potential of the compounds without adverse effects. Conclusion According to our findings, both biological activities and in silico computational studies results demonstrated that compounds 8, 11, and 16 are promising α-amylase inhibitors and antibacterial agents against E. coli, P. aeruginosa, and S. aureus, whereas compound 8 was found to be a promising antioxidant agent.
Collapse
Affiliation(s)
- Demis Zelelew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Yadessa Melaku
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Teshome Geremew
- Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | | | - Lemma Teshome Tufa
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Research Institute of Materials Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Youngeun Choi
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jaebeom Lee
- Department of Chemistry, Department of Chemistry Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
4
|
ZnO Nanoparticle-Assisted Synthesis of Thiazolo[3,2-α]Pyrimidine Analogs: Antibacterial and Antioxidant Activity, In Silico Molecular Docking, and ADMET Prediction Study. J CHEM-NY 2022. [DOI: 10.1155/2022/1346856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, a new series of nine Thiazolo[3,2-α] pyrimidine analogs were synthesized in good to excellent yields (87.9–96.9%) and improved reaction time using a ZnO nanoparticle-assisted protocol. All the synthesized compounds were characterized using a combination of physicochemical parameters, UV-visible, 1H-NMR, and 13C-NMR spectroscopic methods. Among the synthesized compounds, the in vitro antibacterial activity displayed by compound 16 was higher (14.67 ± 0.58 mm at 500 μg/mL) against P. aeruginosa compared to amoxicillin (12.33 ± 0.58 mm at 500 μg/mL), whereas compounds 14 and 18 showed comparable activity (12.00 ± 0.00 mm and 12.33 ± 0.58 mm at 500 μg/mL and 250 μg/mL, respectively) against the same strain. The activities displayed by compounds 14, 16, 18, and 20 were comparable (12.33 ± 1.15 mm, 12.65 ± 0.58 mm, 12.33 ± 0.58 mm, and 12.00 ± 1.00 mm, respectively, at 500 μg/mL) to amoxicillin (13.33 ± 1.15 mm at the same concentration) against E. coli. Compound 19 showed good activity (12.00 ± 1.72 mm at 500 μg/mL) against S. aureus compared to amoxicillin (16.33 ± 0.58 mm at the same concentration). Compound 19 displayed the highest percent inhibition of DPPH with an IC50 value of 9.48 g/mL using the DPPH free radical scavenging assay compared to ascorbic acid (3.21 g/mL) and promising inhibition of peroxide formation (76.28 ± 0.12%), demonstrating its potential in preventing the formation of lipid peroxides. Thus, according to our findings, both the biological activities and in silico computational results revealed that compounds 14, 16, and 18 are good antibacterial agents against P. aeruginosa and E. coli, whereas compound 19 was found to be a promising antibacterial agent against S. aureus and an antioxidant agent. The present study revealed that the synthesized compounds appear to be lead compounds for rational drug design.
Collapse
|
5
|
Şahin İ. SYNTHESIS AND CHARACTERIZATION OF SCHIFF BASES CONTAINING 1,2,3-TRIAZOLE UNIT: PHOTOPHYSICAL AND ACETYL CHOLINE (AChE) INHIBITORY PROPERTIES. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Synthesis, Antibacterial, and Antioxidant Activities of Thiazolyl-Pyrazoline Schiff Base Hybrids: A Combined Experimental and Computational Study. J CHEM-NY 2022. [DOI: 10.1155/2022/3717826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thiazole-pyrazoline Schiff base hybrids have a broad range of pharmacological potential with an ability to control the activity of numerous metabolic enzymes. In this work, a greener and more efficient approach has been developed to synthesize a novel series of thiazole-pyrazoline Schiff base hybrids using ZnO nanoparticle-assisted protocol in good to excellent yields (78.3–96.9%) and examined their antibacterial activity against Gram-positive and Gram-negative bacteria, as well as their antioxidant activity. Compound 24 (IZD = 18.67 ± 0.58) displayed better activity against P. aeruginosa compared with amoxicillin (IZD = 14.33 ± 2.52) at 250 μg/mL, whereas compounds 22 and 24 (IZD = 13.33 ± 0.58 mm and 17.00 ± 1.00 mm, respectively) showed better activity against E. coli compared with amoxicillin (IZD = 14.67 ± 0.58 mm) at 500 μg/mL. The remaining compounds showed moderate to weak activity against the tested bacterial strains. Compound 21 displayed significant inhibition of DPPH (IC50 = 4.63 μg/mL) compared with ascorbic acid (IC50 = 3.21 μg/mL). Compound 21 displayed 80.01 ± 0.07% inhibition of peroxide formation, suggesting its potential in preventing the formation of lipid peroxides. The results of the ADMET study showed that all synthesized compounds obeyed Lipinski's rule of five. In silico pharmacokinetic study demonstrated that compound 24 had superior intestinal absorption compared with amoxicillin. In silico molecular docking analysis revealed a binding affinity of −9.9 Kcal/mol for compound 24 against PqsA compared with amoxicillin (−7.3 Kcal/mol), whereas compounds 22 and 24 displayed higher binding affinity (−8.5 and −7.9 Kcal/mol, respectively) with DNA gyrase B compared with amoxicillin (-7.1 Kcal/mol), in good agreement with in vitro antibacterial activity against P. aeruginosa and E. coli. In silico toxicity study showed that all synthesized compounds had LD50 (mg/kg) values ranging from 800 to 1,000 putting them in ProTox-II class 4. The in vitro antibacterial activity and molecular docking analysis showed that compound 24 is a promising antibacterial therapeutic agent against P. aeruginosa and E. coli and compound 22 is a promising antibacterial agent against E. coli, whereas compound 21 is found to be a potential natural antioxidant agent. Moreover, the green synthesis approach using ZnO nanoparticle as catalyst was found to be a very efficient method to synthesize biologically active thiazole-pyrazoline Schiff base hybrids compared with the conventional method.
Collapse
|
7
|
Akkoc S, Karatas H, Muhammed MT, Kökbudak Z, Ceylan A, Almalki F, Laaroussi H, Ben Hadda T. Drug design of new therapeutic agents: molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J Biomol Struct Dyn 2022:1-14. [DOI: 10.1080/07391102.2022.2111360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| | - Halis Karatas
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Muhammed Tilahun Muhammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Süleyman Demirel University, Isparta, Türkiye
| | - Zülbiye Kökbudak
- Department of Chemistry, Faculty of Science, Erciyes University, Kayseri, Türkiye
| | - Ahmet Ceylan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Faisal Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
| | - Hamid Laaroussi
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah Almukkarramah, Saudi Arabia
- Laboratory of Applied Chemistry & Environment, Faculty of Science, Mohammed Premier University, Oujda, Morocco
| |
Collapse
|