1
|
Ghuge RS, Madhavanunni Rekha S, Vikraman HK, Velappa Jayaraman S, Kiran MSRN, Bhat SV, Sivalingam Y. Transparent TiO 2/MoO 3 Heterojunction-Based Photovoltaic Self-Powered Triethylamine Gas Sensor with IoT-Enabled Smartphone Interface. ACS Sens 2024; 9:6592-6604. [PMID: 39591497 DOI: 10.1021/acssensors.4c02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Conventional gas sensors encounter a significant obstacle in terms of power consumption, making them unsuitable for integration with the next generation of smartphones, wireless platforms, and the Internet of Things (IoT). Energy-efficient gas sensors, particularly self-powered gas sensors, can effectively tackle this problem. The researchers are making significant strides in advancing photovoltaic self-powered gas sensors by employing diverse materials and their compositions. Unfortunately, several of these sensors seem complex in fabrication and mainly target oxidizing species detection. To address these issues, we have successfully employed a transparent, cost-efficient solution processed bilayer TiO2/MoO3 heterojunction-based photovoltaic self-powered gas sensor with superior VOC sensing capabilities, marking a significant milestone in this field. The scanning Kelvin probe (SKP) measurement reveals the remarkable change in contact potential difference (-23 mV/kPa) of the TiO2/MoO3 bilayered film after UV light exposure in a triethylamine (TEA) atmosphere, indicating the highest reactivity between TEA molecules and TiO2/MoO3. Under photovoltaic mode, the sensor further demonstrates exceptional sensitivity (∼2.35 × 10-3 ppm-1) to TEA compared to other studied VOCs, with an admirable limit of detection (22 ppm) and signal-to-noise ratio (1540). Additionally, the sensor shows the ability to recognize TEA and estimate its composition in a binary mixture of VOCs from a similar class. The strongest affinity of TiO2/MoO3 toward the TEA molecule, the lowest covalent bond energy, and the highest electron-donating nature of TEA may be mainly attributed to the highest adsorption between TiO2/MoO3 and TEA. We further demonstrate the practical applicability of the TEA sensor with a prototype device connected to a smartphone via the IoT, enabling continuous surveillance of TEA.
Collapse
Affiliation(s)
- Rahul Suresh Ghuge
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Sreelakshmi Madhavanunni Rekha
- Green Energy Materials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Hajeesh Kumar Vikraman
- Functional Coatings and Materials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Surya Velappa Jayaraman
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Mangalampalli S R N Kiran
- Functional Coatings and Materials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - S Venkataprasad Bhat
- Green Energy Materials Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603 203, India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Metal Oxide Semiconductor Sensors for Triethylamine Detection: Sensing Performance and Improvements. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Triethylamine (TEA) is an organic compound that is commonly used in industries, but its volatile, inflammable, corrosive, and toxic nature leads to explosions and tissue damage. A sensitive, accurate, and in situ monitoring of TEA is of great significance to production safety and human health. Metal oxide semiconductors (MOSs) are widely used as gas sensors for volatile organic compounds due to their high bandgap and unique microstructure. This review aims to provide insights into the further development of MOSs by generalizing existing MOSs for TEA detection and measures to improve their sensing performance. This review starts by proposing the basic gas-sensing characteristics of the sensor and two typical TEA sensing mechanisms. Then, recent developments to improve the sensing performance of TEA sensors are summarized from different aspects, such as the optimization of material morphology, the incorporation of other materials (metal elements, conducting polymers, etc.), the development of new materials (graphene, TMDs, etc.), the application of advanced fabrication devices, and the introduction of external stimulation. Finally, this review concludes with prospects for using the aforementioned methods in the fabrication of high-performance TEA gas sensors, as well as highlighting the significance and research challenges in this emerging field.
Collapse
|