Cao YY, Guo MY, Liu XJ, Wang BZ, Jiao QC, Zhu HL. A highly chromogenic selective Rhodamine-chloride-based fluorescence probe activated by cysteine and application in living cells and zebrafish.
SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022;
283:121635. [PMID:
36007345 DOI:
10.1016/j.saa.2022.121635]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Cysteine (Cys), one of the biological thiols, which plays critical roles in biological system regulating the balance of redox homeostasis. In order to monitor the level of Cys in the living cells and organisms, a chromogenic fluorescence probe Rhocl-Cys based on Rhodamine chloride exhibiting the preferable performance of fluorescence turn-on response reacting with Cys was presented. Rhocl-Cys responded rapidly to Cys within 20 min, and had stable fluorescence intensity within pH 6.0-10.0, high selectivity towards Cys and the anti-inference capability with a low detection limit of 0.80 μM. In particular, Rhocl-Cys could qualitatively and quantitatively monitor the level of endogenous and exogenous Cys in living cells and successfully apply to zebrafish detecting Cys. Therefore, these results might further provide the basis exploring the role of Cys in biological system and facilitate as clinical diagnostic molecular tools.
Collapse