1
|
Acar M, Daştan A, Koçak R. Fluorometric and colorimetric sensor for selective detection of cyanide anion by dibenzosuberenone-based dihydropyridazine in aqueous solution. Talanta 2024; 277:126241. [PMID: 38820826 DOI: 10.1016/j.talanta.2024.126241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
A new chemosensory based on deprotonation and intramolecular charge transfer (ICT) was developed to detect cyanide in food samples. Deprotonation was facilitated by increasing the acidity of the NH proton in the dibenzosuberenone-based dihydropyridazine chemosensor Pz3 with -CN substituents. Addition of cyanide to acetonitrile and aqueous acetonitrile solution (1/9) of Pz3 resulted in their significant color change from colorless to purple in visible light, accompanied by a strong red shift in the absorption spectrum. Meanwhile, the near-infrared (NIR) emission (ex. 525 nm, em. 670 nm) of Pz3- resulting from deprotonation showed fluorescence switching behavior to detect the cyanide anion. While the acidic NH protons interact with basic anions as F-, CN-, OAc- and H2PO4- in organic solution (MeCN), just CN ions interact with in aqueous organic solutions (H2O-MeCN 1/9 HEPES pH 7.4). The limit of detection of cyanide from the fluorescence spectrum is 80 nM, which is well below the value determined for drinking water by World Health Organization (WHO). The interference effect of cations and anions showed that Pz3 could play an important role in the determination of waste NaCN. In addition, Pz3 successfully carried out the selective detection of cyanide in food samples such as bitter almonds and sprouting potatoes.
Collapse
Affiliation(s)
- Murat Acar
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey; Research Laboratory Practice and Research Centre (ALUM), Iğdır University, Iğdır 76000, Turkey.
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey
| | - Ramazan Koçak
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum 25240, Turkey; Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya 05100, Turkey.
| |
Collapse
|
2
|
An optical chemosensor for nano-level determination of Pb2+ and Cu2+ in aqueous media and its application in cell imaging. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
3
|
Gul Z, Salman M, Khan S, Shehzad A, Ullah H, Irshad M, Zeeshan M, Batool S, Ahmed M, Altaf AA. Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity. Crit Rev Anal Chem 2023; 54:2500-2516. [PMID: 36913240 DOI: 10.1080/10408347.2023.2186165] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The detection of key ions in environmental samples has garnered significant attention in recent years in the pursuit of a cleaner environment for living organisms. Bifunctional and multifunctional sensors, as opposed to single-species sensors, have emerged as a rapidly developing field. Many reports in the literature have documented the use of bifunctional sensors for the subsequent detection of metal and cyanide ions. These sensors, consisting of simple organic ligands, form coordination compounds with transition metal ions, resulting in clear visible or fluorescent changes that facilitate detection. In some cases, a single polymeric material can act as a ligand and coordinate with metal ions, forming a complex that serves as a sensor for cyanide ion detection in biological and environmental samples through various mechanisms. Nitrogen is the most dominant coordinating site in these bifunctional sensors, with the sensitivity of the sensors being directly proportional to the denticities of ligands for metal ions, while for cyanide ions the sensitivity was found independent of the denticity of the ligands. This review covers the progress made in the field over the past fifteen years (2007-2022), with most ligands detecting copper (II) and cyanide ions, but with the capability to detect other metals such as iron, mercury, and cobalt as well.
Collapse
Affiliation(s)
- Zarif Gul
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Muhammad Salman
- Department of Mathematics and Statistics, International Islamic University, Islamabad, Pakistan
| | - Shahab Khan
- Department of Chemistry, University of Malakand, Chakdara, Pakistan
| | - Adnan Shehzad
- Center for Chemistry, University of Swat, KPK, Charbagh, Pakistan
| | - Hussain Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Motia Irshad
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Muhammad Zeeshan
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Sidra Batool
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Maryam Ahmed
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Moon S, Lee JJ, Kim C. Sequential detecting of Ni2+ and CN− with a Chalcone-based colorimetric chemosensor in near-perfect water. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Green and Ligand-free Gold Nanoparticles in Padina australis Extract for Colorimetric Detection of Cu2+ in Water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Toyama M, Hasegawa T, Nagao N. Colorimetric fluoride detection in dimethyl sulfoxide using a heteroleptic ruthenium(ii) complex with amino and amide groups: X-ray crystallographic and spectroscopic analyses. RSC Adv 2022; 12:25227-25239. [PMID: 36199333 PMCID: PMC9450000 DOI: 10.1039/d2ra03593f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
A bis-heteroleptic ruthenium(ii) complex, [Ru(Hdpa)2(H2pia)]X2 (1·X2; X = Cl, OTf, or F; Hdpa = di-2-pyridylamine; H2pia = 2-pycolinamide; OTf- = CF3SO3 -), was synthesized and spectroscopically and crystallographically characterized. The crystal structures of 1·Cl2·2.5H2O and 1·F2·2EtOH revealed essentially identical geometries for the 12+ dication; however, the dihedral angle between the two pyridyl groups in the Hdpa ligands, which represented the degree of bending of the bent conformation, was affected by hydrogen-bonding interactions between the NH group and counterions. In 1·F2·2EtOH, one of the Hdpa ligands had an unusually smaller dihedral angle (15.8°) than the others (29.9°-35.0°). The two NH groups of each Hdpa ligand and the NH2 group of the H2pia ligand in 12+ acted as receptors for F- anion recognition via hydrogen-bonding interactions in a dimethyl sulfoxide (DMSO) solution, and the reaction showed an unambiguous color change in the visible region. Upon the addition of tetra-n-butylammonium fluoride to the red DMSO solution of 1·(OTf)2·H2O, the solution turned dark brown. 1H NMR analysis and absorption spectroscopy of the reaction between 12+ and the added F- anions revealed that the F- anions did not distinguish between the two amino groups of Hdpa and the amide group of H2pia, although they were in different environments in the DMSO solution. A tris-F-adduct with 12+, 1·F3 -, was formed when sufficient F- anions were present in the solution, despite the presence of four NH protons in 12+. Time-dependent DFT calculations of 12+ and 1·F3 - were consistent with their absorption spectra.
Collapse
Affiliation(s)
- Mari Toyama
- Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University 18-8 Hatsucho Neyagawa Osaka 572-8530 Japan
- Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University 8-9-1 Okamoto, Higashinada Kobe Hyogo 658-8501 Japan
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama Kawasaki Kanagawa 214-8571 Japan
| | - Tomoki Hasegawa
- Department of Chemistry of Functional Molecules, Faculty of Science and Engineering, Konan University 8-9-1 Okamoto, Higashinada Kobe Hyogo 658-8501 Japan
| | - Noriharu Nagao
- Department of Applied Chemistry, School of Science and Technology, Meiji University 1-1-1 Higashimita, Tama Kawasaki Kanagawa 214-8571 Japan
| |
Collapse
|
7
|
Colorimetric probe for sequential chemosensing of mercury(II) and cyanide ions in aqueous media, based on a benzoxadiazole-pyrazolin-5-one glycoconjugate with INHIBIT logic gate response. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Copper (II)-Catalyzed Oxidation of Ascorbic Acid: Ionic Strength Effect and Analytical Use in Aqueous Solution. INORGANICS 2022. [DOI: 10.3390/inorganics10070102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Copper is an important metal both in living organisms and in the industrial activity of humans, it is also a distributed water pollutant and a toxic agent capable of inducing acute and chronic health disorders. There are several fluorescent chemosensors for copper (II) determination in solutions; however, they are often difficult to synthesize and solvent-sensitive, requiring a non-aqueous medium. The present paper improves the known analytical technique for copper (II) ions, where the linear dependence between the ascorbic acid oxidation rate constant and copper (II) concentration is used. The limits of detection and quantification of the copper (II) analysis kinetic method are determined to be 82 nM and 275 nM, respectively. In addition, the selectivity of the chosen indicator reaction is shown: Cu2+ cations can be quantified in the presence of the 5–20 fold excess of Co2+, Ni2+, and Zn2+ ions. The La3+, Ce3+, and UO22+ ions also do not catalyze the ascorbic acid oxidation reaction. The effect of the concentration of the common background electrolytes is studied, the anomalous influence for chloride-containing salts is observed and discussed.
Collapse
|
9
|
Isaad J, Malek F, Achari AE. Colorimetric and fluorescent probe based on coumarin/ thiophene derivative for sequential detection of mercury(II) and cyanide ions in an aqueous medium. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
HEO JAESUNG, SUH BOEON, KIM CHEAL. Selective detection of Cu2+ by benzothiazole-based colorimetric chemosensor: a DFT study. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02037-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|