1
|
Chandrasekhar S, Raghu MS, Yogesh Kumar K, Alharethy F, Prashanth MK, Jeon BH. Theoretical and experimental investigation of novel quinazoline derivatives: synthesis, photophysical, reactive properties, molecular docking and selective HSA biointeraction. J Biomol Struct Dyn 2024; 42:6772-6787. [PMID: 37477248 DOI: 10.1080/07391102.2023.2237590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Two new quinazoline derivatives (2a and 2b) were successfully synthesized in this work using the condensation technique in excellent yields. Using spectroscopic techniques and elemental analyses, the compounds were completely characterized. Density functional theory (DFT) computations have been used to examine the title compound's reactive characteristics. Chemical reactivity was predicted using local reactive descriptors and molecule electrostatic potential. Additionally, Time dependent DFT (TD-DFT) simulations were used to examine the impact of solvents on the photophysical characteristics. The affinity of compounds 2a and 2b for human serum albumin (HSA) was further explored using several electronic spectroscopies. Through static mechanisms, both compounds reduce the intrinsic fluorescence of HSA. It is determined that the HSA-2b complex's binding constant is significantly greater than the HSA-2a complex. The fluorescence spectrum measurements proved that the HSA underwent structural changes after interaction with these compounds. It was demonstrated by site marker competitive displacement studies that compounds 2a and 2b preferred to bind to site I in HSA subdomain IIA. Additionally, synchronised fluorescence spectra were utilized to analyze how HSA's conformation changed after interacting with various substances. The molecular docking investigations of these compounds with the three critical HSA binding sites, comprising subdomains IIA, IIIA, and IB, further confirmed the experimental findings. The significant contact between the investigated compounds and HSA was supported by the docking simulations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Chandrasekhar
- Department of Physics, B N M Institute of Technology, Bengaluru, India
| | - M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Raghu MS, Yogesh Kumar K, Shamala T, Alharti FA, Prashanth MK, Jeon BH. Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis. J Biomol Struct Dyn 2024; 42:3307-3317. [PMID: 37261798 DOI: 10.1080/07391102.2023.2217928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023]
Abstract
The promising quinazolinone-based pyridine derivatives (4a-j) were synthesized and subsequently tested for their antimycobacterial activities against the various drug-sensitive and drug-resistant Mycobacterium tuberculosis (Mtb) strains to combat infectious diseases and address growing concerns about the devastating effects of tuberculosis (TB). Utilizing 1H NMR, 13C NMR, and mass spectra, the structural and molecular confirmation of the synthesized compounds were deciphered. With minimum inhibitory concentration (MIC) values ranging from 0.31 to 19.13 μM, the results showed that compounds 4e and 4f showed promise anti-TB action against both drug-sensitive and drug-resistant TB strains. To study the cytotoxicity of synthesized molecules, normal Vero and mouse macrophage (RAW264.7) cell lines were utilized. Remarkably, it was revealed that at the highest concentration tested, none of the newly synthesized molecules were toxic to the Vero cell line. The binding patterns of the potent compounds 4b, 4e and 4f in the active site of the mycobacterial membrane protein Large 3 (MmpL3) protein are also revealed by molecular docking studies, which has contributed to the development of a structural rationale for Mtb inhibition. The physicochemical characteristics of the compounds were then predicted using theoretical calculations. Overall, the molecular docking results, physiochemical properties, and observed antimycobacterial activity all point to compound 4e with trifluoromethyl and compound 4f with nitro moiety as potential quinazolinone linked pyridine-based MmpL3 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, India
| | - K Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, India
| | - T Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Fahad A Alharti
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Raghu M, Swarup H, Shamala T, Prathibha B, Kumar KY, Alharethy F, Prashanth M, Jeon BH. Design, synthesis, anticancer activity and docking studies of novel quinazoline-based thiazole derivatives as EGFR kinase inhibitors. Heliyon 2023; 9:e20300. [PMID: 37809937 PMCID: PMC10560058 DOI: 10.1016/j.heliyon.2023.e20300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/10/2023] Open
Abstract
The in vitro anticancer efficacy of a new series of quinazoline-based thiazole derivatives was explored. Three cancer cell lines, MCF-7, HepG2, and A548, as well as the normal Vero cell lines, were tested employing the synthesized quinazoline-based thiazole compounds (4a-j). All of these compounds showed a moderate to significant cytotoxic impact that would have been noticeable and, in some cases, much more pronounced than the widely used drug erlotinib. For the MCF-7, HepG2, and A549 cell lines, respectively, the IC50 values of compound 4i were 2.86, 5.91, and 14.79 μM while those of compound 4j were 3.09, 6.87, and 17.92 μM. For their in vitro inhibitory effects against different EGFR kinases, such as the wild-type, L858R/T790 M, and L858R/T790 M/C797S, all the synthesized compounds were tested. The IC50 values for compound 4f against the wild-type, L858R/T790 M, and L858R/T790 M/C797S mutant EGFR kinases were 2.17, 2.81, and 3.62 nM, respectively. Investigations on the molecular docking of significant molecules indicated potential mechanisms of binding into the EGFR kinase active sites. By using in-silico simulations, compounds' putative drug-like qualities were verified. Finally, it has been shown that the newly synthesized compounds 4i and 4j are good candidates and beneficial for future design, optimization, and research to build more potent and selective EGFR kinase inhibitors with higher anticancer activity.
Collapse
Affiliation(s)
- M.S. Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru, 560 103, India
| | - H.A. Swarup
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - T. Shamala
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - B.S. Prathibha
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - K. Yogesh Kumar
- Department of Chemistry, Faculty of Engineering and Technology, Jain University, Ramanagara, 562 112, India
| | - Fahd Alharethy
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - M.K. Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru, 560 070, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
4
|
Raghu M, Swarup H, Prathibha B, Kumar KY, Kumar CBP, Alharti FA, Prashanth M, Jeon BH. Design, synthesis and molecular docking studies of 5,6-difluoro-1H-benzo[d]imidazole derivatives as effective binders to GABAA receptor with potent anticonvulsant activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Alhamzani AG, Yousef TA, Abou-Krisha MM, Raghu M, Yogesh Kumar K, Prashanth M, Jeon BH. Design, synthesis, molecular docking and pharmacological evaluation of novel triazine-based triazole derivatives as potential anticonvulsant agents. Bioorg Med Chem Lett 2022; 77:129042. [DOI: 10.1016/j.bmcl.2022.129042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
6
|
Veena K, Raghu M, Yogesh Kumar K, Pradeep Kumar C, Alharti FA, Prashanth M, Jeon BH. Design and synthesis of novel benzimidazole linked thiazole derivatives as promising inhibitors of drug-resistant tuberculosis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Raghu MS, Kumar CBP, Kumar KY, Prashanth MK, Alshahrani MY, Ahmad I, Jain R. Design, synthesis and molecular docking studies of imidazole and benzimidazole linked ethionamide derivatives as inhibitors of InhA and antituberculosis agents. Bioorg Med Chem Lett 2022; 60:128604. [PMID: 35123004 DOI: 10.1016/j.bmcl.2022.128604] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/31/2022]
Abstract
To explore effective antituberculosis agents, a new class of imidazoles and benzimidazoles linked ethionamide analogs were designed and synthesized. The elemental analysis, 1H NMR, 13C NMR and mass spectral data were used to characterize all of the novel analogs. In vitro activity against Mycobacterium tuberculosis (Mtb) H37Rv was assessed for all of the target compounds. The hydroxy and nitrile moieties on the imidazole ring, as well as the hydroxy and methoxy groups on the benzimidazole ring connected to the ethionamide side chain, were shown to be advantageous. In our cell viability experiment against the Vero cell line, all of the compounds were non-cytotoxic even at 100 μM. To confirm the powerful analogs target identification, we investigated their in vitro inhibitory action on an M. tuberculosis InhA over-expressing (Mtb InhA-OE) strain, which yielded MICs nearly twice those of the Mtb H37Rv strain. Furthermore, the results of molecular docking confirmed the experimental findings. Additionally, the molecules were evaluated in silico for ADMET and drug similarity features. The experimental observation enables the newly generated ethionamide derivatives to be attractive candidates for the creation of newer and better anti-TB agents.
Collapse
Affiliation(s)
- M S Raghu
- Department of Chemistry, New Horizon College of Engineering, Bengaluru 560 103, India
| | - C B Pradeep Kumar
- Department of Chemistry, Malnad College of Engineering, Hassan 573 202, India
| | - K Yogesh Kumar
- Department of Chemistry, School of Engineering and Technology, Jain University, Ramanagara, 562 112, India
| | - M K Prashanth
- Department of Chemistry, B N M Institute of Technology, Bengaluru 560 070, India.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 9088, Saudi Arabia
| | - Ranjana Jain
- Department of Training & Placement, Jain University, Ramanagara, 562 112, India
| |
Collapse
|