1
|
Maranata GJ, Megantara S, Hasanah AN. An Update in Computational Methods for Environmental Monitoring: Theoretical Evaluation of the Molecular and Electronic Structures of Natural Pigment-Metal Complexes. Molecules 2024; 29:1680. [PMID: 38611959 PMCID: PMC11013237 DOI: 10.3390/molecules29071680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024] Open
Abstract
Metals are beneficial to life, but the presence of these elements in excessive amounts can harm both organisms and the environment; therefore, detecting the presence of metals is essential. Currently, metal detection methods employ powerful instrumental techniques that require a lot of time and money. Hence, the development of efficient and effective metal indicators is essential. Several synthetic metal detectors have been made, but due to their risk of harm, the use of natural pigments is considered a potential alternative. Experiments are needed for their development, but they are expensive and time-consuming. This review explores various computational methods and approaches that can be used to investigate metal-pigment interactions because choosing the right methods and approaches will affect the reliability of the results. The results show that quantum mechanical methods (ab initio, density functional theory, and semiempirical approaches) and molecular dynamics simulations have been used. Among the available methods, the density functional theory approach with the B3LYP functional and the LANL2DZ ECP and basis set is the most promising combination due to its good accuracy and cost-effectiveness. Various experimental studies were also in good agreement with the results of computational methods. However, deeper analysis still needs to be carried out to find the best combination of functions and basis sets.
Collapse
Affiliation(s)
- Gabriella Josephine Maranata
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
| | - Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, 5, Jatinangor, Sumedang 45363, Indonesia (S.M.)
- Drug Development Study Centre, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Naróg D, Sobkowiak A. Electrochemistry of Flavonoids. Molecules 2023; 28:7618. [PMID: 38005343 PMCID: PMC10674230 DOI: 10.3390/molecules28227618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This review presents a description of the available data from the literature on the electrochemical properties of flavonoids. The emphasis has been placed on the mechanism of oxidation processes and an attempt was made to find a general relation between the observed reaction paths and the structure of flavonoids. Regardless of the solvent used, three potential regions related to flavonoid structures are characteristic of the occurrence of their electrochemical oxidation. The potential values depend on the solvent used. In the less positive potential region, flavonoids, which have an ortho dihydroxy moiety, are reversibly oxidized to corresponding o-quinones. The o-quinones, if they possess a C3 hydroxyl group, react with water to form a benzofuranone derivative (II). In the second potential region, (II) is irreversibly oxidized. In this potential region, some flavonoids without an ortho dihydroxy moiety can also be oxidized to the corresponding p-quinone methides. The oxidation of the hydroxyl groups located in ring A, which are not in the ortho position, occurs in the third potential region at the most positive values. Some discrepancies in the reported reaction mechanisms have been indicated, and this is a good starting point for further investigations.
Collapse
Affiliation(s)
- Dorota Naróg
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| | - Andrzej Sobkowiak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszów University of Technology, 35-959 Rzeszów, Poland
| |
Collapse
|
3
|
Abdeyazdan S, Mohajeri M, Saberi S, Mirzaei M, Ayatollahi SA, Saghaei L, Ghanadian M. Sb(V) Kaempferol and Quercetin Derivative Complexes: Synthesis, Characterization and Antileishmanial Activities. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e128379. [PMID: 36942069 PMCID: PMC10024330 DOI: 10.5812/ijpr-128379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Background Recent studies on Leishmaniasis treatment have confirmed the antiparasitic effects of flavonols and organic antimony pentavalent [(Sb(V)] complexes. Objectives This study aimed to identify new Sb(V) complexes by combining the benefits of antimonials and flavonols as well as by optimizing their properties. Methods Kaempferol and quercetin peracetate were prepared using acetic anhydride in pyridine. By performing regioselective synthesis, 7-O-paramethylbenzyl as an electron-donating group and 7-O-paranitrobenzyl as an electron-withdrawing group were added to quercetin, and, then, the synthesis of Sb(V) kaempferol and quercetin derivative complexes were performed using SbCl5 solution in glacial acetic acid. The structures were confirmed by UV, ESI mass, IR, 1H-, and 13C-NMR spectral data, and the Stoichiometry of the ligand-metal complex by the mole ratio method. Computational molecular modeling was conducted using the Gaussian program. Results The structures were confirmed based on the results from UV, nuclear magnetic resonance (NMR), and electrospray ionization (ESI) mass analyses (3-12). Among the produced compounds, 11 and 12 as newly described, and other compounds as pre-defined compounds were identified. According to the results from biological test, kaempferol triacetate with more lipophilicity showed the highest anti-promastigote activity with an IC50 value of 14.93 ± 2.21 µM. As for anti-amastigote activity, despite the differences, all antimony complexes showed anti-amastigote effects in vitro with IC50 values of 0.52 to 14.50 µM. Conclusions All flavonol Sb(V) complexes showed higher activity compared to meglumine antimonate in anti-amastigote effect. Inside the host macrophages, by breaking down the complex into antimony and quercetin or kaempferol analogs, the observed antiparasitic effects may have been related to both Sb(V)/Sb(III) conversion and flavonoid antileishmanial activities.
Collapse
Affiliation(s)
- Sara Abdeyazdan
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Mohajeri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sedigheh Saberi
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahmoud Mirzaei
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pharmacognosy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmacognosy, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Su L, Lv A, Wen W, Fan N, Li J, Gao L, Zhou P, An Y. MsMYB741 is involved in alfalfa resistance to aluminum stress by regulating flavonoid biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:756-771. [PMID: 36097968 DOI: 10.1111/tpj.15977] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity severely restricts plant growth in acidic soils (pH < 5.0). In this study, an R2R3-MYB transcription factor (TF) gene, MsMYB741, was cloned from alfalfa. Its function and gene regulatory pathways were studied via overexpression and RNA interference of MsMYB741 in alfalfa seedlings. Results showed that root elongation increased as a result of MsMYB741 overexpression (MsMYB741-OE) and decreased with MsMYB741 RNA interference (MsMYB741-RNAi) in alfalfa seedlings compared with the wild-type under Al stress. These were attributed to the reduced Al content in MsMYB741-OE lines, and increased Al content in MsMYB741-RNAi lines. MsMYB741 positively activated the expression of phenylalanine ammonia-lyase 1 (MsPAL1) and chalcone isomerase (MsCHI) by binding to MYB and ABRE elements in their promoters, respectively, which directly affected flavonoid accumulation in roots and secretion from root tips in plants under Al stress, eventually affecting Al accumulation in alfalfa. Additionally, MsABF2 TF directly activated the expression of MsMYB741 by binding to the ABRE element in its promoter. Taken together, our results indicate that MsMYB741 transcriptionally activates MsPAL1 and MsCHI expression to increase flavonoid accumulation in roots and secretion from root tips, leading to increased resistance of alfalfa to Al stress.
Collapse
Affiliation(s)
- Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaojiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Li Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
5
|
Matsia S, Tsave O, Hatzidimitriou A, Salifoglou A. Chromium Flavonoid Complexation in an Antioxidant Capacity Role. Int J Mol Sci 2022; 23:ijms23137171. [PMID: 35806176 PMCID: PMC9266733 DOI: 10.3390/ijms23137171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
The plethora of flavonoid antioxidants in plant organisms, widespread in nature, and the appropriate metal ions known for their influence on biological processes constitute the crux of investigations toward the development of preventive metallodrugs and therapeutics in several human pathophysiologies. To that end, driven by the need to enhance the structural and (bio)chemical attributes of the flavonoid chrysin, as a metal ion complexation agent, thereby rendering it bioavailable toward oxidative stress, synthetic efforts in our lab targeted ternary Cr(III)-chrysin species in the presence of auxiliary aromatic N,N′-chelators. The crystalline metal-organic Cr(III)-chrysin-L (L = bipyridine (1) and phenanthroline (2)) compounds that arose were physicochemically characterized by elemental analysis, FT-IR, UV-Visible, ESI-MS, luminescence, and X-ray crystallography. The properties of these compounds in a solid state and in solution formulate a well-defined profile for the two species, thereby justifying their further use in biological experiments, intimately related to cellular processes on oxidative stress. Experiments in C2C12 myoblasts at the cellular level (a) focus on the antioxidant capacity of the Cr(III)-complexed flavonoids, emphasizing their distinct antiradical activity under oxidative stress conditions, and (b) exemplify the importance of structural speciation in Cr(III)-flavonoid interactions, thereby formulating correlations with the antioxidant activity of a bioavailable flavonoid toward cellular pathophysiologies, collectively supporting flavonoid introduction in new metallo-therapeutics.
Collapse
Affiliation(s)
- Sevasti Matsia
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Olga Tsave
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (O.T.)
| | - Antonios Hatzidimitriou
- Laboratory of Inorganic Chemistry, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Salifoglou
- Laboratory of Inorganic Chemistry and Advanced Materials, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.M.); (O.T.)
- Correspondence: ; Tel.: +30-2310-996-179
| |
Collapse
|