1
|
La YT, Du MX, Gan LL, Zhang Y, Sun YX, Dong WK. Spectroscopic and theoretical studies on a novel bis(salamo)-like probe for highly effective fluorimetric-colorimetric identification of Fe 3+ and Cu 2+ in aquo-organic medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123481. [PMID: 37804710 DOI: 10.1016/j.saa.2023.123481] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 10/09/2023]
Abstract
A novel bis(salamo)-type sensor FT for fluorescence-colorimetric recognition of Fe3+/Cu2+ has been created, which revealed significant fluorescent performance and colorimetric sensing ability for Cu2+ and Fe3+ ions, superior to other related competitive metal ions. Interestingly, the binding of the FT probe with Cu2+ ions manifested an instant color change from colorless to red in sunlight, which is detectable by the naked-eye, and a fluorescence turn-off response under UV light for Fe3+ and Cu2+. The results demonstrated that the probe exhibits better sensitivity, greater affinity and lower limit of detection leading to quick response time in an aquo-organic medium. The excited state property of the FT probe and in the presence of Cu2+/Fe3+ was evaluated on the basis of DFT & TD-DFT results. Furthermore, test strips have been provided for convenient monitoring of Cu2+ and Fe3+ ions by naked eye and fluorescence method.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ming-Xia Du
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Lu-Lu Gan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
2
|
La YT, Yan YJ, Li X, Zhang Y, Sun YX, Dong WK. Coordination-Driven Salamo-Salen-Salamo-Type Multinuclear Transition Metal(II) Complexes: Synthesis, Structure, Luminescence, Transformation of Configuration, and Nuclearity Induced by the Acetylacetone Anion. Inorg Chem 2023. [PMID: 37311103 DOI: 10.1021/acs.inorgchem.3c01149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible polydentate Salamo-Salen-Salamo hybrid ligand H4L was designed and synthesized, which has rich pockets (salamo and salen pockets) so that it may have fascinating coordination patterns with transition metal(II) ions. Four multinuclear transition metal(II) complexes, novel butterfly-shaped homotetranuclear [Ni4(L)(μ1-OAc)2(μ1,3-OAc)2(H2O)0.5(CH3CH2OH)3.5]·4CH3CH2OH (1), helical homotrinuclear [Zn3(L)(μ1-OAc)2]·2CH3CH2OH (2), double-helical homotrinuclear [Cu2(H2L)2]·2CH3CN (3), and mononuclear [Ni(H2L)]·1.5CH3COCH3 (4), have been synthesized and characterized by single-crystal X-ray diffraction. The effects of different anions [OAc- and (O2C5H7)2-] on the complexation behavior of H4L with transition metal(II) ions were studied by UV-vis spectrophotometry. The fluorescent properties of the four complexes were studied with zebrafish, which are expected to be a potential light-emitting material. Ultimately, interaction region indicator (IRI) valuations, Hirshfeld surface analyses, density functional theory (DFT & TD-DFT), electrostatic potential analyses (ESP), and simulations were carried out to further demonstrate the weak interactions and electronic properties of the free ligand and its four complexes.
Collapse
Affiliation(s)
- Ya-Ting La
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xun Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| |
Collapse
|
3
|
Dhara A, Fadler RE, Chen Y, Köttner LA, Van Craen D, Carta V, Flood AH. Orthogonal, modular anion-cation and cation-anion self-assembly using pre-programmed anion binding sites. Chem Sci 2023; 14:2585-2595. [PMID: 36908961 PMCID: PMC9993851 DOI: 10.1039/d2sc05121d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Subcomponent self-assembly relies on cation coordination whereas the roles of anions often only emerge during the assembly process. When sites for anions are instead pre-programmed, they have the potential to be used as orthogonal elements to build up structure in a predictable and modular way. We explore this idea by combining cation (M+) and anion (X-) binding sites together and show the orthogonal and modular build up of structure in a multi-ion assembly. Cation binding is based on a ligand (L) made by subcomponent metal-imine chemistry (M+ = Cu+, Au+) while the site for anion binding (X- = BF4 -, ClO4 -) derives from the inner cavity of cyanostar (CS) macrocycles. The two sites are connected by imine condensation between a pyridyl-aldehyde and an aniline-modified cyanostar. The target assembly [LM-CS-X-CS-ML],+ generates two terminal metal complexation sites (LM and ML) with one central anion-bridging site (X) defined by cyanostar dimerization. We showcase modular assembly by isolating intermediates when the primary structure-directing ions are paired with weakly coordinating counter ions. Cation-directed (Cu+) or anion-bridged (BF4 -) intermediates can be isolated along either cation-anion or anion-cation pathways. Different products can also be prepared in a modular way using Au+ and ClO4 -. This is also the first use of gold(i) in subcomponent self-assembly. Pre-programmed cation and anion binding sites combine with judicious selection of spectator ions to provide modular noncovalent syntheses of multi-component architectures.
Collapse
Affiliation(s)
- Ayan Dhara
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA .,Department of Chemistry and Biochemistry, University of Windsor Windsor Ontario N9B 3P4 Canada
| | - Rachel E Fadler
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA .,Wayne State University Law School, Wayne State University 471 W Palmer Ave Detroit MI 48202 USA
| | - Yusheng Chen
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Laura A Köttner
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA .,Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Str. 10 91058 Erlangen Germany
| | - David Van Craen
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA .,Department of Chemistry and Chemical Biology, Technische Universität Dortmund Otto-Hahn-Str. 6 44227 Dortmund Germany
| | - Veronica Carta
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| | - Amar H Flood
- Department of Chemistry, Indiana University 800 East Kirkwood Avenue Bloomington IN 47405 USA
| |
Collapse
|
4
|
Li WD, Huang Y, Li SZ, Dong WK. A novel double-armed salamo-based probe for highly selective fluorescence detection of tryptophan and Al3+. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Ding YF, Wei YX, Li WD, Wang L, Li M, Dong WK. Construction of an Unprecedented Homodinuclear Copper(II) Salamo-Based Complex. RUSS J GEN CHEM+ 2023. [DOI: 10.1134/s1070363223020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
6
|
Huang Y, Li WD, Wei YX, Wang L, Dong WK. Structural, theoretical and optical investigations of two lateral twisting trinuclear Co(II) and Ni(II) salamo type complexes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Paradoxical fluorescein-naphthalene Salamo-Salen-Salamo Zn(II) complex as a H2PO4−-targeted chemosensor and its application in water samples. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Li SZ, Li WD, Yan YB, Zhang Y, Dong WK. Investigations of stable penta- and hexa-coordinate polynuclear Zn(II) and Cd(II) complexes derived from a single-armed salamo-based ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2159396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shi-Zhen Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Da Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yi-Bin Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
9
|
Peng YD, Yan YJ, La YT, Han XJ, Huang F, Dong WK. Two novel Cu(II) and Ni(II) quinolone-containing half-salamo-like complexes: Theoretical and experimental studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Solvent-driven self-assembly of two novel di- and tetra-nuclear Cu(II) bis(salamo)-based complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ma LJ, Li X, Yan YJ, Yue YN, Dong WK. An investigation of two heterobimetallic [Cu(II)2Ln(III)] (Ln = La and Ce) complexes of a more flexible bis(salamo)‐type ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Man LL, Li SZ, Zhang J, Zhang Y, Dong WK. A new single-armed salamo-based sensor with aggregation-induced emission characteristic for selective sensing of aluminium ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Dou L, Hu ZF, Feng LC, Dong WK. Differential study on the transition from a new polyhalogen-substituted unsymmetric salamo-based ligand to its Cu(II) and Co(II) complexes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2124509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Zhi-Fei Hu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Le-Chuan Feng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, PR China
| |
Collapse
|
14
|
Sun YX, Li J, Li JG, Deng ZP, Sun Y, Xu L. Synthesis, crystal structure and coordination behaviors of two unexpected tetranuclear Zn(II) and Co(II) supramolecular boxes derived from structural variation of coumarin schiff base ligand. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2114831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Juan Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Jin-Guo Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Zhe-Peng Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Yu Sun
- Experimental Teaching Department of Northwest, Minzu University, Lanzhou, China
| | - Li Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|