1
|
Tao S, Pu Y, Yang EJ, Ren G, Shi C, Chen LJ, Chen L, Shim JS. Inhibition of GSK3β is synthetic lethal with FHIT loss in lung cancer by blocking homologous recombination repair. Exp Mol Med 2025; 57:167-183. [PMID: 39762409 PMCID: PMC11799392 DOI: 10.1038/s12276-024-01374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/06/2024] [Accepted: 10/06/2024] [Indexed: 02/07/2025] Open
Abstract
FHIT is a fragile site tumor suppressor that is primarily inactivated upon tobacco smoking. FHIT loss is frequently observed in lung cancer, making it an important biomarker for the development of targeted therapy for lung cancer. Here, we report that inhibitors of glycogen synthase kinase 3 beta (GSK3β) and the homologous recombination DNA repair (HRR) pathway are synthetic lethal with FHIT loss in lung cancer. Pharmacological inhibition or siRNA depletion of GSK3β selectively suppressed the growth of FHIT-deficient lung cancer tumors in vitro and in animal models. We further showed that FHIT inactivation leads to the activation of DNA damage repair pathways, including the HRR and NHEJ pathways, in lung cancer cells. Conversely, FHIT-deficient cells are highly dependent on HRR for survival under DNA damage stress. The inhibition of GSK3β in FHIT-deficient cells suppressed the ATR/BRCA1/RAD51 axis in HRR signaling via two distinct pathways and suppressed DNA double-strand break repair, leading to the accumulation of DNA damage and apoptosis. Small molecule inhibitors of HRR, but not NHEJ or PARP, induced synthetic lethality in FHIT-deficient lung cancer cells. The findings of this study suggest that the GSK3β and HRR pathways are potential drug targets in lung cancer patients with FHIT loss.
Collapse
Affiliation(s)
- Shishi Tao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yue Pu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Eun Ju Yang
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Guowen Ren
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, China
| | - Changxiang Shi
- Nanjing Key Laboratory of Female Fertility Preservation and Restoration, Nanjing Women and Children's Healthcare Institute, Women's Hospital of Nanjing Medical University (Nanjing Women and Children's Healthcare Hospital), Nanjing, 210004, China
| | - Li-Jie Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Liang Chen
- Shenzhen Laboratory of Tumor Cell Biology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Joong Sup Shim
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
- MOE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
2
|
Alsufyani D, Lindesay J. Evidence of cancer-linked rodent zoonoses from biophysical genomic variations. Sci Rep 2023; 13:13969. [PMID: 37634038 PMCID: PMC10460378 DOI: 10.1038/s41598-023-41257-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 08/23/2023] [Indexed: 08/28/2023] Open
Abstract
As a mechanism to explore the role of environmental adaptation in establishing the optimal distribution of single nucleotide polymophisms (SNPs) within resident homeostatic populations, relationships between quantified environmental parameters and the frequencies of the variants are being explored. We have performed sequential double-blind scans on more than 30% of chromosome 3 in an attempt to discover possible relationships using simple mathematical functions that are indicative of "adaptive forces" on the variants due to specific quantified environmental agents. We have found an association of rs13071758 with rodent zoonotic diseases. This variant is within the FHIT gene, which spans the most fragile of the common fragile sites in human lymphoblasts. FHIT, which is highly sensitive to environmental carcinogens, is partially lost in most human cancers. This finding is consistent with other studies postulating an association between rodent zoonoses and cancer. We quantify the adaptive force on the T allele as 0.28 GEUs per unit of zoonotic rodent host richness.
Collapse
Affiliation(s)
- Daniah Alsufyani
- College of Sciences and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia.
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia.
| | - James Lindesay
- Computational Physics Laboratory, Department of Physics, Howard University, 2355 Sixth Street NW, Washington, DC, USA
| |
Collapse
|
3
|
Danese A, Marchi S, Vitto VAM, Modesti L, Leo S, Wieckowski MR, Giorgi C, Pinton P. Cancer-Related Increases and Decreases in Calcium Signaling at the Endoplasmic Reticulum-Mitochondria Interface (MAMs). Rev Physiol Biochem Pharmacol 2020; 185:153-193. [PMID: 32789789 DOI: 10.1007/112_2020_43] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER)-mitochondria regions are specialized subdomains called also mitochondria-associated membranes (MAMs). MAMs allow regulation of lipid synthesis and represent hubs for ion and metabolite signaling. As these two organelles can module both the amplitude and the spatiotemporal patterns of calcium (Ca2+) signals, this particular interaction controls several Ca2+-dependent pathways well known for their contribution to tumorigenesis, such as metabolism, survival, sensitivity to cell death, and metastasis. Mitochondria-mediated apoptosis arises from mitochondrial Ca2+ overload, permeabilization of the mitochondrial outer membrane, and the release of mitochondrial apoptotic factors into the cytosol. Decreases in Ca2+ signaling at the ER-mitochondria interface are being studied in depth as failure of apoptotic-dependent cell death is one of the predominant characteristics of cancer cells. However, some recent papers that linked MAMs Ca2+ crosstalk-related upregulation to tumor onset and progression have aroused the interest of the scientific community.In this review, we will describe how different MAMs-localized proteins modulate the effectiveness of Ca2+-dependent apoptotic stimuli by causing both increases and decreases in the ER-mitochondria interplay and, specifically, by modulating Ca2+ signaling.
Collapse
Affiliation(s)
- Alberto Danese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Modesti
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Leo
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
4
|
Zhou R, Yang Y, Park SY, Nguyen TT, Seo YW, Lee KH, Lee JH, Kim KK, Hur JS, Kim H. The lichen secondary metabolite atranorin suppresses lung cancer cell motility and tumorigenesis. Sci Rep 2017; 7:8136. [PMID: 28811522 PMCID: PMC5557893 DOI: 10.1038/s41598-017-08225-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Lichens are symbiotic organisms that produce various secondary metabolites. Here, different lichen extracts were examined to identify secondary metabolites with anti-migratory activity against human lung cancer cells. Everniastrum vexans had the most potent inhibitory activity, and atranorin was identified as an active subcomponent of this extract. Atranorin suppressed β-catenin-mediated TOPFLASH activity by inhibiting the nuclear import of β-catenin and downregulating β-catenin/LEF and c-jun/AP-1 downstream target genes such as CD44, cyclin-D1 and c-myc. Atranorin decreased KAI1 C-terminal interacting tetraspanin (KITENIN)-mediated AP-1 activity and the activity of the KITENIN 3′-untranslated region. The nuclear distribution of the AP-1 transcriptional factor, including c-jun and c-fos, was suppressed in atranorin-treated cells, and atranorin inhibited the activity of Rho GTPases including Rac1, Cdc42, and RhoA, whereas it had no effect on epithelial-mesenchymal transition markers. STAT-luciferase activity and nuclear STAT levels were decreased, whereas total STAT levels were moderately reduced. The human cell motility and lung cancer RT² Profiler PCR Arrays identified additional atranorin target genes. Atranorin significantly inhibited tumorigenesis in vitro and in vivo. Taken together, our results indicated that E. vexans and its subcomponent atranorin may inhibit lung cancer cell motility and tumorigenesis by affecting AP-1, Wnt, and STAT signaling and suppressing RhoGTPase activity.
Collapse
Affiliation(s)
- Rui Zhou
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Yi Yang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.,Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - So-Yeon Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea
| | - Thanh Thi Nguyen
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea.,Faculty of Natural Science and Technology, Tay Nguyen University, Buon Ma Thuot, Vietnam
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju, Republic of Korea
| | - Kyung Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Sunchon, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Republic of Korea.
| |
Collapse
|
5
|
Beaumont M, Goodrich JK, Jackson MA, Yet I, Davenport ER, Vieira-Silva S, Debelius J, Pallister T, Mangino M, Raes J, Knight R, Clark AG, Ley RE, Spector TD, Bell JT. Heritable components of the human fecal microbiome are associated with visceral fat. Genome Biol 2016; 17:189. [PMID: 27666579 PMCID: PMC5036307 DOI: 10.1186/s13059-016-1052-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Variation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures. RESULTS We profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome and obesity. CONCLUSIONS Our results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with clear potential for prevention and novel therapies.
Collapse
Affiliation(s)
- Michelle Beaumont
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Julia K Goodrich
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew A Jackson
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Idil Yet
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Emily R Davenport
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Sara Vieira-Silva
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- VIB lab for Bioinformatics and (eco-)systems biology, Leuven, Belgium
| | - Justine Debelius
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Present address: Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tess Pallister
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK
| | - Jeroen Raes
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
- VIB lab for Bioinformatics and (eco-)systems biology, Leuven, Belgium
| | - Rob Knight
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, 80309, USA
- Biofrontiers Institute, University of Colorado, Boulder, CO, 80309, USA
- Howard Hughes Medical Institute, Boulder, CO, 80309, USA
- Present address: Departments of Pediatrics and Computer Science and Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andrew G Clark
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruth E Ley
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK.
| | - Jordana T Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, St Thomas' Hospital, 3rd Floor, South Wing, Block D, London, SE1 7EH, UK.
| |
Collapse
|
6
|
Hu C, Wei W, Chen X, Woodman CB, Yao Y, Nicholls JM, Joab I, Sihota SK, Shao JY, Derkaoui KD, Amari A, Maloney SL, Bell AI, Murray PG, Dawson CW, Young LS, Arrand JR. A global view of the oncogenic landscape in nasopharyngeal carcinoma: an integrated analysis at the genetic and expression levels. PLoS One 2012; 7:e41055. [PMID: 22815911 PMCID: PMC3398876 DOI: 10.1371/journal.pone.0041055] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/17/2012] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC.
Collapse
Affiliation(s)
- Chunfang Hu
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Xiaoyi Chen
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - Ciaran B. Woodman
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yunhong Yao
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Pathology, Guangdong Medical College, Zhanjiang, Guangdong, China
| | - John M. Nicholls
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | - Irène Joab
- UMR542 Inserm-Université Paris Sud, Villejuif, France
| | - Sim K. Sihota
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jian-Yong Shao
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Centre, Guangzhou, China
| | - K. Dalia Derkaoui
- Laboratoire de Biologie du Développement et de la Différenciation, Faculté des Sciences, Université d’Oran, Oran, Algeria
| | - Aicha Amari
- ORL Centre Hospitalier et Universitaire, Oran, Algeria
| | | | - Andrew I. Bell
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Lawrence S. Young
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John R. Arrand
- School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial Ca(2+) and apoptosis. Cell Calcium 2012; 52:36-43. [PMID: 22480931 PMCID: PMC3396846 DOI: 10.1016/j.ceca.2012.02.008] [Citation(s) in RCA: 356] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 02/23/2012] [Accepted: 02/24/2012] [Indexed: 01/13/2023]
Abstract
Mitochondria are key decoding stations of the apoptotic process. In support of this view, a large body of experimental evidence has unambiguously revealed that, in addition to the well-established function of producing most of the cellular ATP, mitochondria play a fundamental role in triggering apoptotic cell death. Various apoptotic stimuli cause the release of specific mitochondrial pro-apoptotic factors into the cytosol. The molecular mechanism of this release is still controversial, but there is no doubt that mitochondrial calcium (Ca(2+)) overload is one of the pro-apoptotic ways to induce the swelling of mitochondria, with perturbation or rupture of the outer membrane, and in turn the release of mitochondrial apoptotic factors into the cytosol. Here, we review as different proteins that participate in mitochondrial Ca(2+) homeostasis and in turn modulate the effectiveness of Ca(2+)-dependent apoptotic stimuli. Strikingly, the final outcome at the cellular level is similar, albeit through completely different molecular mechanisms: a reduced mitochondrial Ca(2+) overload upon pro-apoptotic stimuli that dramatically blunts the apoptotic response.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Common fragile site tumor suppressor genes and corresponding mouse models of cancer. J Biomed Biotechnol 2010; 2011:984505. [PMID: 21318118 PMCID: PMC3035048 DOI: 10.1155/2011/984505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/23/2010] [Indexed: 12/20/2022] Open
Abstract
Chromosomal common fragile sites (CFSs) are specific mammalian genomic regions that show an increased frequency of gaps and breaks when cells are exposed to replication stress in vitro. CFSs are also consistently involved in chromosomal abnormalities in vivo related to cancer. Interestingly, several CFSs contain one or more tumor suppressor genes whose structure and function are often affected by chromosomal fragility. The two most active fragile sites in the human genome are FRA3B and FRA16D where the tumor suppressor genes FHIT and WWOX are located, respectively. The best approach to study tumorigenic effects of altered tumor suppressors located at CFSs in vivo is to generate mouse models in which these genes are inactivated. This paper summarizes our present knowledge on mouse models of cancer generated by knocking out tumor suppressors of CFS.
Collapse
|
9
|
Pichiorri F, Palumbo T, Suh SS, Okamura H, Trapasso F, Ishii H, Huebner K, Croce CM. Fhit tumor suppressor: guardian of the preneoplastic genome. Future Oncol 2009; 4:815-24. [PMID: 19086848 DOI: 10.2217/14796694.4.6.815] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental agents induce intragenic alterations in the FRA3B/FHIT chromosome fragile site, resulting in fragile FHIT allele loss early in cancer development. Fhit knockout mice are predisposed to tumor development and Fhit gene therapy reduces tumor burden. Repair-deficient cancers are likely to be Fhit-deficient and Fhit-deficient cells show enhanced resistance to ultraviolet C, mitomycin C, camptothecin and oxidative stress-induced cell killing. Loss of Fhit leads to alterations in the DNA damage response checkpoint and contributes to DNA instability. Hsp60/Hsp10 are Fhit interactors, suggesting a direct role for Fhit in stress responses. Fhit also interacts with and stabilizes ferrodoxin reductase (Fdxr), a mitochondrial flavoprotein that transfers electrons from NADPH to cytochrome P450, suggesting a role for Fhit in the modulation of reactive oxygen species production and of genomic damage.
Collapse
Affiliation(s)
- Flavia Pichiorri
- Ohio State University Comprehensive Cancer Center, Department of Molecular Virology, Molecular Virology and Medical Genetics. 460 W 12th Avenue, 43210 Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Aqeilan RI, Hagan JP, Aqeilan HA, Pichiorri F, Fong LYY, Croce CM. Inactivation of the Wwox gene accelerates forestomach tumor progression in vivo. Cancer Res 2007; 67:5606-10. [PMID: 17575124 PMCID: PMC2621009 DOI: 10.1158/0008-5472.can-07-1081] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The WWOX gene encodes a tumor suppressor spanning the second most common human fragile site, FRA16D. Targeted deletion of the Wwox gene in mice led to an increased incidence of spontaneous and ethyl nitrosourea-induced tumors. In humans, loss of heterozygosity and reduced or loss of WWOX expression has been reported in esophageal squamous cell cancers (SCC). In the present study, we examined whether inactivation of the Wwox gene might lead to enhanced esophageal/forestomach tumorigenesis induced by N-nitrosomethylbenzylamine. Wwox+/- and Wwox+/+ mice were treated with six intragastric doses of N-nitrosomethylbenzylamine and observed for 15 subsequent weeks. Ninety-six percent (25 of 26) of Wwox+/- mice versus 29% (10 of 34) of Wwox+/+ mice developed forestomach tumors (P = 1.3 x 10(-7)). The number of tumors per forestomach was significantly greater in Wwox+/- than in Wwox+/+ mice (3.2 +/- 0.34 versus 0.47 +/- 0.17; P < 0.0001). In addition, 27% of Wwox+/- mice had invasive SCC in the forestomach, as compared with 0% of wild-type controls (P = 0.002). Intriguingly, forestomachs from Wwox+/- mice displayed moderately strong Wwox protein staining in the near-normal epithelium, but weak and diffuse staining in SCC in the same tissue section, a result suggesting that Wwox was haploinsufficient for the initiation of tumor development. Our findings provide the first in vivo evidence of the tumor suppressor function of WWOX in forestomach/esophageal carcinogenesis and suggest that inactivation of one allele of WWOX accelerates the predisposition of normal cells to malignant transformation.
Collapse
Affiliation(s)
- Rami I Aqeilan
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Jung HY, Sung JS, Whang YM, Shin HD, Park BL, Kim JS, Shin SW, Seo HY, Sung HJ, Choi IK, Oh SC, Seo JH, Kim YH. Lack of association of fragile histidine triad (FHIT) polymorphisms with lung cancer in the Korean population. J Hum Genet 2007; 52:668. [PMID: 17609851 DOI: 10.1007/s10038-007-0169-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 06/01/2007] [Indexed: 11/29/2022]
Abstract
The fragile histidine triad (FHIT), which was located on chromosome 3p14.2, was currently considered a promising candidate for a tumor suppressor gene. FHIT performed a crucial function in the tumorigenesis of lung cancer. The inactivation of FHIT via genetic alterations, including the chromosomal deletions and aberrant transcription, are often associated with lung cancer. In this study, the association between FHIT and lung cancer development was evaluated in a study of Korean patients. A total of 299 Korean lung cancer patients and 296 control subjects were recruited into this study. Direct DNA sequencing and TaqMan analysis were employed. Logistic regression analyses were conducted in order to characterize the association between FHIT polymorphisms and lung cancer risk. Via direct sequencing in 24 Korean individuals, 27 sequence variants were identified. Eleven of these polymorphisms were selected for a larger scale genotyping (n = 595). Our finding indicated that the polymorphisms and haplotypes in the FHIT gene are not associated with lung cancer in the Korean population.
Collapse
Affiliation(s)
- Hae-Yun Jung
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Jae Sook Sung
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Young Mi Whang
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Hyoung Doo Shin
- Department of Genetic Epidemiology, SNP Genetics, Inc., Rm 1407, 14th floor, Complex B, WooLim Lion's Valley, 371-28 Gasan-Dong, Geumcheon-Gu, Seoul, Korea
| | - Byung Lae Park
- Department of Genetic Epidemiology, SNP Genetics, Inc., Rm 1407, 14th floor, Complex B, WooLim Lion's Valley, 371-28 Gasan-Dong, Geumcheon-Gu, Seoul, Korea
| | - Jun Suk Kim
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Sang Won Shin
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Hee Yun Seo
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Hwa Jung Sung
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - In Keun Choi
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Sang Cheul Oh
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Jae Hong Seo
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea
| | - Yeul Hong Kim
- Department of Internal Medicine and Brain Korea 21 Project for Biomedical Science, Genomic Research Center for Lung and Breast/Ovarian Cancers, Korea University College of Medicine, 126-1, Anam-dong 5Ga, Sungbuk-Gu, Seoul, 136-705, Korea.
| |
Collapse
|
12
|
De Flora S, D'Agostini F, Izzotti A, Zanesi N, Croce CM, Balansky R. Molecular and cytogenetical alterations induced by environmental cigarette smoke in mice heterozygous for Fhit. Cancer Res 2007; 67:1001-6. [PMID: 17283132 DOI: 10.1158/0008-5472.can-06-3882] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies in humans and animal models provided evidence that the Fhit gene is an early target for cigarette smoke. We compared the induction of a variety of molecular and cytogenetical alterations in B6-129(F(1)) mice, either wild type or Fhit(+/-), after whole-body exposure to environmental cigarette smoke (ECS) for 15 consecutive days. Both mouse genotypes responded to ECS with a loss of Fhit protein in the bronchial epithelium, accompanied by induction of apoptosis and stimulation of cell proliferation. ECS induced formation of bulky DNA adducts in whole lung. In addition, ECS caused cytogenetical damage both in the respiratory tract and at a systemic level, as shown by a significant increase of micronucleus frequency in pulmonary alveolar macrophages, bone marrow polychromatic erythrocytes, and peripheral blood normochromatic erythrocytes of both wild-type and Fhit(+/-) mice. These results are compared with those generated in other species, strains, and genotypes of rodents exposed to ECS that we investigated previously. Although the loss of Fhit protein in the bronchial epithelium of ECS-exposed B6-129(F(1)) mice provides further evidence that the Fhit gene is an early molecular target for ECS, heterozygosity for Fhit does not seem to confer an increased susceptibility of mice in terms of the investigated early biomarkers.
Collapse
Affiliation(s)
- Silvio De Flora
- Department of Health Sciences, University of Genoa, via A. Pastore 1, I-16132 Genoa, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
D'Agostini F, Izzotti A, Balansky R, Zanesi N, Croce CM, De Flora S. Early loss of Fhit in the respiratory tract of rodents exposed to environmental cigarette smoke. Cancer Res 2006; 66:3936-41. [PMID: 16585223 DOI: 10.1158/0008-5472.can-05-3666] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Fhit gene, encompassing the most active common human chromosomal fragile region, FRA3B, has been shown to act as a tumor suppressor. Several studies have shown significant Fhit alterations or Fhit protein loss in lung cancers from smokers compared with lung cancers from nonsmokers. To evaluate the role of Fhit under controlled experimental conditions, we exposed rodents to environmental cigarette smoke (ECS) and evaluated Fhit expression or Fhit protein in the respiratory tract. After 14 days of exposure to ECS, loss of Fhit protein in the bronchial/bronchiolar epithelium affected half of the tested B6-129(F(1)) mice, either wild type or Fhit(+/-). After 28 days, it affected the vast majority of the tested SKH-1 hairless mice and of A/J mice and all (UL53-3 x A/J)F(1) mice, either wild type or P53(+/-). In Sprague-Dawley rats, exposure to ECS for up to 30 days caused a time-dependent loss of Fhit in pulmonary alveolar macrophages. Moreover, ECS down-regulated Fhit expression and significantly decreased Fhit protein in the rat bronchial epithelium. The oral administration of N-acetylcysteine attenuated the ECS-related loss of Fhit, whereas oltipraz, 5,6-benzoflavone, phenethyl isothiocyanate, and indole 3-carbinol, and their combinations had no significant effect. Parallel studies evaluated a variety of molecular, biochemical, and cytogenetic alterations in the respiratory tract of the same animals. In conclusion, there is unequivocal evidence that Fhit is an early, critical target in smoke-related lung carcinogenesis in rodents, and that certain chemopreventive agents can attenuate the occurrence of this gene alteration.
Collapse
Affiliation(s)
- Francesco D'Agostini
- Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Balansky R, D'Agostini F, Ganchev G, Izzotti A, Di Marco B, Lubet RA, Zanesi N, Croce CM, De Flora S. Influence of FHIT on benzo[a]pyrene-induced tumors and alopecia in mice: chemoprevention by budesonide and N-acetylcysteine. Proc Natl Acad Sci U S A 2006; 103:7823-8. [PMID: 16672365 PMCID: PMC1472529 DOI: 10.1073/pnas.0601412103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The FHIT gene has many hallmarks of a tumor-suppressor gene and is involved in a large variety of cancers. We treated A/J mice and (C57BL/6J x 129/SvJ)F1 (B6/129 F1) mice, either wild-type or FHIT+/-, with multiple doses of benzo[a]pyrene (B[a]P) by gavage. B[a]P caused a time-related increase of micronuclei in peripheral blood erythrocytes. Both A/J and B6/129 F1 mice, irrespective of their FHIT status, were sensitive to induction of forestomach tumors, whereas B[a]P induced glandular stomach hyperplasia and a high multiplicity of lung tumors in A/J mice only. Preneoplastic lesions of the uterus were more frequent in FHIT+/- mice. B6/129 F1 mice underwent spontaneous alopecia areata and hair bulb cell apoptosis, which were greatly accelerated either by FHIT heterozygosity or by B[a]P treatment, thus suggesting that FHIT plays a role in the pathogenesis of alopecia areata. The oral administration of either budesonide or N-acetyl-L-cysteine (NAC) inhibited the occurrence of this inflammatory skin disease. In addition, these agents prevented B[a]P-induced glandular stomach hyperplasia and decreased the size of both forestomach tumors and lung tumors in A/J mice. Budesonide also attenuated lung tumor multiplicity. In B6/129 F1 mice, NAC significantly decreased the proliferating cell nuclear antigen in lung tumors. Both budesonide and NAC inhibited B[a]P-induced forestomach tumors and preneoplastic lesions of the respiratory tract in B6/129 F1 mice. In conclusion, heterozygosity for FHIT affects susceptibility of mice to spontaneous alopecia areata and B[a]P-induced preneoplastic lesions of the uterus and does not alter responsiveness to budesonide and NAC.
Collapse
Affiliation(s)
- Roumen Balansky
- *Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
- National Center of Oncology, Sofia 1756, Bulgaria
| | - Francesco D'Agostini
- *Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
| | | | - Alberto Izzotti
- *Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
| | - Barbara Di Marco
- *Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
| | | | - Nicola Zanesi
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Carlo M. Croce
- Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210
| | - Silvio De Flora
- *Department of Health Sciences, University of Genoa, Via A. Pastore 1, I-16132 Genoa, Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Ferguson LR, Bronzetti G, De Flora S. Mechanistic approaches to chemoprevention of mutation and cancer. Mutat Res 2005; 591:3-7. [PMID: 16095634 DOI: 10.1016/j.mrfmmm.2005.05.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 04/28/2005] [Accepted: 05/01/2005] [Indexed: 05/03/2023]
Abstract
This is the eighth special issue of 'Mutation Research' to focus on antimutagenesis and anticarcinogenesis. It covers a wide range of mechanisms from prevention of cancer initiation by antimutagens through to inhibition of tumour angiogenesis and selective estrogen receptor modulators. New screening methods and new biomarkers are also elucidated. There is increasing reason to believe that the long-term use of a combination of anticarcinogens, over an extended time span, may provide a realistic prospect of reducing the current burden of human cancers.
Collapse
Affiliation(s)
- Lynnette R Ferguson
- The University of Auckland, School of Medical Sciences, Faculty of Medical and Health Sciences, Discipline of Nutrition/ACSRC, Private Bag 92019, Auckland 1000, New Zealand
| | | | | |
Collapse
|