1
|
Liu H, Huang R, Shan J, Xie X, Wang C, Hu P, Sun X. Artemis as Predictive Biomarker of Responsiveness to Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Curr Oncol 2024; 31:535-546. [PMID: 38248122 PMCID: PMC10814650 DOI: 10.3390/curroncol31010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
The aim of this study was to identify Artemis as a predictive biomarker for guiding preoperative chemoradiotherapy in locally advanced rectal cancer. The resection specimens were collected from 50 patients with rectal cancer who underwent preoperative chemoradiotherapy. Artemis expression in biopsy tissues was evaluated using immunohistochemical staining according to the percentage of positively stained cells combined with staining intensity. Among the 50 patients, 36 (72%) had a weakly positive Artemis protein expression, 10 (20%) had a moderately positive expression, and 4 (8%) showed a strongly positive expression. The criteria of magnetic resonance imaging tumor regression grade (mrTRG) and pathological rectal cancer regression grade (RCRG) were used to assess the tumor response to chemoradiotherapy. Correlation analysis shows that there is a significant negative correlation between high Artemis immunoscore and treatment response (r = -0.532, p < 0.001). The results imply that high Artemis expression was associated with poor treatment response. Our study suggested a potential role of Artemis as a predictive biomarker of the tumor response to preoperative chemoradiotherapy in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Runying Huang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Jingjing Shan
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Xuyun Xie
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| | - Chongwei Wang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Peng Hu
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China;
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China; (H.L.); (R.H.); (J.S.); (X.X.)
| |
Collapse
|
2
|
Novotny JP, Mariño-Enríquez A, Fletcher JA. Targeting DNA-PK. Cancer Treat Res 2023; 186:299-312. [PMID: 37978142 DOI: 10.1007/978-3-031-30065-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This chapter explores the multifaceted roles of DNA-PK with particular focus on its functions in non-homologous end-joining (NHEJ) DNA repair. DNA-PK is the primary orchestrator of NHEJ but also regulates other biologic processes. The growing understanding of varied DNA-PK biologic roles highlights new avenues for cancer treatment. However, these multiple roles also imply challenges, particularly in combination therapies, with perhaps a higher risk of clinical toxicities than was previously envisioned. These considerations underscore the need for compelling and innovative strategies to accomplish effective clinical translation.
Collapse
|
3
|
Wu HY, Zheng Y, Laciak AR, Huang NN, Koszelak-Rosenblum M, Flint AJ, Carr G, Zhu G. Structure and Function of SNM1 Family Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1414:1-26. [PMID: 35708844 DOI: 10.1007/5584_2022_724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Three human nucleases, SNM1A, SNM1B/Apollo, and SNM1C/Artemis, belong to the SNM1 gene family. These nucleases are involved in various cellular functions, including homologous recombination, nonhomologous end-joining, cell cycle regulation, and telomere maintenance. These three proteins share a similar catalytic domain, which is characterized as a fused metallo-β-lactamase and a CPSF-Artemis-SNM1-PSO2 domain. SNM1A and SNM1B/Apollo are exonucleases, whereas SNM1C/Artemis is an endonuclease. This review contains a summary of recent research on SNM1's cellular and biochemical functions, as well as structural biology studies. In addition, protein structure prediction by the artificial intelligence program AlphaFold provides a different view of the proteins' non-catalytic domain features, which may be used in combination with current results from X-ray crystallography and cryo-EM to understand their mechanism more clearly.
Collapse
|
4
|
Xiao F, Lu Y, Wu B, Liu B, Li G, Zhang P, Zhou Q, Sun J, Wang H, Zhou W. High-Frequency Exon Deletion of DNA Cross-Link Repair 1C Accounting for Severe Combined Immunodeficiency May Be Missed by Whole-Exome Sequencing. Front Genet 2021; 12:677748. [PMID: 34421990 PMCID: PMC8372405 DOI: 10.3389/fgene.2021.677748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Next-generation sequencing (NGS) has been used to detect severe combined immunodeficiency (SCID) in patients, and some patients with DNA cross-link repair 1C (DCLRE1C) variants have been identified. Moreover, some compound variants, such as copy number variants (CNV) and single nucleotide variants (SNV), have been reported. The purpose of this study was to expand the genetic data related to patients with SCID carrying the compound DCLRE1C variant. Whole-exome sequencing (WES) was performed for genetic analysis, and variants were verified by performing Sanger sequencing or quantitative PCR. Moreover, we searched PubMed and summarized the data of the reported variants. Four SCID patients with DCLRE1C variants were identified in this study. WES revealed a homozygous deletion in the DCLRE1C gene from exons 1–5 in patient 1, exons 1–3 deletion and a novel rare variant (c.92T>C, p.L31P) in patient 2, exons 1–3 deletion and a novel rare variant (c.328C>G, p.L110V) in patient 3, and exons 1–4 deletion and a novel frameshift variant (c.449dup, p.His151Alafs*20) in patient 4. Based on literature review, exons 1–3 was recognized as a hotspot region for deletion variation. Moreover, we found that compound variations (CNV + SNV) accounted for approximately 7% variations in all variants. When patients are screened for T-cell receptor excision circles (TRECs), NGS can be used to expand genetic testing. Deletion of the DCLRE1C gene should not be ignored when a variant has been found in patients with SCID.
Collapse
Affiliation(s)
- Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yulan Lu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bingbing Wu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Bo Liu
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gang Li
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Ping Zhang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Qinhua Zhou
- Department of Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinqiao Sun
- Department of Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Huijun Wang
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.,Key Laboratory of Neonatal Diseases, Ministry of Health, Department of Neonates, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
5
|
Karaselek MA, Kapaklı H, Keleş S, Güner ŞN, Çelik ŞÇ, Kurar E, Reisli İ. Intrauterine detection of DCLRE1C (Artemis) mutation by restriction fragment length polymorphism. Pediatr Allergy Immunol 2019; 30:668-671. [PMID: 30947362 DOI: 10.1111/pai.13056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mehmet Ali Karaselek
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Hasan Kapaklı
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Sevgi Keleş
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Şükrü Nail Güner
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Şeyma Çelikbilek Çelik
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| | - Ercan Kurar
- Necmettin Erbakan University Meram Medical Faculty, Department of Medical Biology, Konya, Turkey
| | - İsmail Reisli
- Necmettin Erbakan University, Meram Medical Faculty, Department of Pediatric Allergy and Immunology, Konya, Turkey
| |
Collapse
|
6
|
Modeling the interplay between DNA-PK, Artemis, and ATM in non-homologous end-joining repair in G1 phase of the cell cycle. J Biol Phys 2019; 45:127-146. [PMID: 30707386 DOI: 10.1007/s10867-018-9519-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023] Open
Abstract
Modeling a biological process equips us with more comprehensive insight into the process and a more advantageous experimental design. Non-homologous end joining (NHEJ) is a major double-strand break (DSB) repair pathway that occurs throughout the cell cycle. The objective of the current work is to model the fast and slow phases of NHEJ in G1 phase of the cell cycle following exposure to ionizing radiation (IR). The fast phase contains the major components of NHEJ; Ku70/80 complex, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and XLF/XRCC4/ligase IV complex (XXL). The slow phase in G1 phase of the cell cycle is associated with more complex lesions and involves ATM and Artemis proteins in addition to the major components. Parameters are mainly obtained from experimental data. The model is successful in predicting the kinetics of DSB foci in 13 normal, ATM-deficient, and Artemis-deficient mammalian fibroblast cell lines in G1 phase of the cell cycle after exposure to low doses of IR. The involvement of ATM provides the model with the potency to be connected to different signaling pathways. Ku70/80 concentration and DNA-binding rate as well as XXL concentration and enzymatic activity are introduced as the best targets for affecting NHEJ DSB repair process. On the basis of the current model, decreasing concentration and DNA binding rate of DNA-PKcs is more effective than inhibiting its activity towards the Artemis protein.
Collapse
|
7
|
Liu H, Wang X, Huang A, Gao H, Sun Y, Jiang T, Shi L, Wu X, Dong Q, Sun X. Silencing Artemis Enhances Colorectal Cancer Cell Sensitivity to DNA-Damaging Agents. Oncol Res 2018; 27:29-38. [PMID: 29426373 PMCID: PMC7848410 DOI: 10.3727/096504018x15179694020751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Artemis is a key protein of NHEJ (nonhomologous end joining), which is the major pathway for the repair of IR-induced DSBs in mammalian cells. However, the expression of Artemis in tumors and the influence of silencing Artemis on tumor sensitivity to radiation have not been investigated fully. In this study, we investigated how the expression levels of Artemis may affect the treatment outcome of radiotherapy and chemotherapy in colorectal cancer cells. First, we found that the expression of Artemis is strong in some human rectal cancer samples, being higher than in adjacent normal tissues using immunohistochemical staining. We then knocked down Artemis gene in a human colorectal cancer cell line (RKO) using lentivirus-mediated siRNAs. Compared to the control RKO cells, the Artemis knockdown cells showed significantly increased sensitivity to bleomycin, etoposide, camptothecin, and IR. Induced by DNA-damaging agents, delayed DNA repair kinetics was found by the γ-H2AX foci assay, and a significantly increased cell apoptosis occurred in the Artemis knockdown RKO cells through apoptosis detection methods and Western blot. We also found that the p53/p21 signaling pathway may be involved in the apoptosis process. Taken together, our study indicates that manipulating Artemis can enhance colorectal cancer cell sensitivity to DNA-damaging agents. Therefore, Artemis can serve as a therapeutic target in rectal cancer therapy.
Collapse
Affiliation(s)
- Hai Liu
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xuanxuan Wang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Aihua Huang
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Huaping Gao
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Yikan Sun
- Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Tingting Jiang
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Liming Shi
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| | - Xianjie Wu
- Department of Dermatology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Qinghua Dong
- Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaonan Sun
- Department of Radiation Oncology, Sir Run Run Shaw Hospital, Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
8
|
Roh C. Metabolomics in Radiation-Induced Biological Dosimetry: A Mini-Review and a Polyamine Study. Biomolecules 2018; 8:biom8020034. [PMID: 29844258 PMCID: PMC6023017 DOI: 10.3390/biom8020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023] Open
Abstract
In this study, we elucidate that polyamine metabolite is a powerful biomarker to study post-radiation changes. Metabolomics in radiation biodosimetry, the application of a metabolomics analysis to the field of radiobiology, promises to increase the understanding of biological responses by ionizing radiation (IR). Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. Among metabolites, polyamine is one of many potential biomarkers to estimate radiation response. In addition, this review provides an opportunity for the understanding of a radiation metabolomics in biodosimetry and a polyamine case study.
Collapse
Affiliation(s)
- Changhyun Roh
- Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 29, Geumgu-gil, Jeongeup-si, Jeonbuk 56212, Korea.
- Radiation Biotechnology and Applied Radioisotope Science, University of Science Technology (UST), 217 Gajeong-ro, Daejeon 34113, Korea.
| |
Collapse
|
9
|
Ma J, Setton J, Morris L, Carrillo Albornoz PB, Barker C, Lok BH, Sherman E, Katabi N, Beal K, Ganly I, Powell SN, Lee N, Chan TA, Riaz N. Genomic analysis of exceptional responders to radiotherapy reveals somatic mutations in ATM. Oncotarget 2017; 8:10312-10323. [PMID: 28055970 PMCID: PMC5354661 DOI: 10.18632/oncotarget.14400] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/30/2016] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is a mainstay of cancer treatment, yet the molecular determinants of clinical response are poorly understood. We identified exceptional responders to radiotherapy based on clinical response, and investigated the associated tumor sequencing data in order to identify additional patients with similar mutations. Among head and neck squamous cell cancer patients receiving palliative radiotherapy at our institution, we identified one patient with documented complete metabolic response. Targeted sequencing analysis of the tumor identified a somatic frame-shift mutation in ATM, a gene known to be associated with radio-sensitivity in the germline. To validate the association of somatic ATM mutation with radiotherapy response, we identified eight patients with ATM truncating mutations who received radiotherapy, all of whom demonstrated excellent responses with a median local control period of 4.62 years. Analysis of 22 DNA repair genes in The Cancer Genome Atlas (TCGA) data revealed mutations in 15.9% of 9064 tumors across 24 cancer types, with ATM mutations being the most prevalent. This is the first study to suggest that exceptional responses to radiotherapy may be determined by mutations in DNA repair genes. Sequencing of DNA repair genes merits attention in larger cohorts and may have significant implications for the personalization of radiotherapy.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Ataxia Telangiectasia Mutated Proteins/genetics
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnostic imaging
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/radiotherapy
- Carcinoma, Squamous Cell/diagnostic imaging
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Computational Biology
- DNA Mutational Analysis
- Databases, Genetic
- Endometrial Neoplasms/diagnostic imaging
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/radiotherapy
- Female
- Head and Neck Neoplasms/diagnostic imaging
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/radiotherapy
- Humans
- Lung Neoplasms/diagnostic imaging
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/radiotherapy
- Middle Aged
- Mutation
- Palliative Care
- Patient Selection
- Precision Medicine
- Radiation Tolerance/genetics
- Radiotherapy Dosage
- Retrospective Studies
- Squamous Cell Carcinoma of Head and Neck
- Treatment Outcome
Collapse
Affiliation(s)
- Jennifer Ma
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeremy Setton
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Luc Morris
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Christopher Barker
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Benjamin H. Lok
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric Sherman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nora Katabi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kathryn Beal
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simon N. Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nancy Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A. Chan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
10
|
Waide EH, Dekkers JCM, Ross JW, Rowland RRR, Wyatt CR, Ewen CL, Evans AB, Thekkoot DM, Boddicker NJ, Serão NVL, Ellinwood NM, Tuggle CK. Not All SCID Pigs Are Created Equally: Two Independent Mutations in the Artemis Gene Cause SCID in Pigs. THE JOURNAL OF IMMUNOLOGY 2015; 195:3171-9. [PMID: 26320255 DOI: 10.4049/jimmunol.1501132] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 01/07/2023]
Abstract
Mutations in >30 genes are known to result in impairment of the adaptive immune system, causing a group of disorders collectively known as SCID. SCID disorders are split into groups based on their presence and/or functionality of B, T, and NK cells. Piglets from a line of Yorkshire pigs at Iowa State University were shown to be affected by T(-)B(-)NK(+) SCID, representing, to our knowledge, the first example of naturally occurring SCID in pigs. In this study, we present evidence for two spontaneous mutations as the molecular basis for this SCID phenotype. Flow cytometry analysis of thymocytes showed an increased frequency of immature T cells in SCID pigs. Fibroblasts from these pigs were more sensitive to ionizing radiation than non-SCID piglets, eliminating the RAG1 and RAG2 genes. Genetic and molecular analyses showed that two mutations were present in the Artemis gene, which in the homozygous or compound heterozygous state cause the immunodeficient phenotype. Rescue of SCID fibroblast radiosensitivity by human Artemis protein demonstrated that the identified Artemis mutations are the direct cause of this cellular phenotype. The work presented in the present study reveals two mutations in the Artemis gene that cause T(-)B(-)NK(+) SCID in pigs. The SCID pig can be an important biomedical model, but these mutations would be undesirable in commercial pig populations. The identified mutations and associated genetic tests can be used to address both of these issues.
Collapse
Affiliation(s)
- Emily H Waide
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Jack C M Dekkers
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Jason W Ross
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Raymond R R Rowland
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Carol R Wyatt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Catherine L Ewen
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66502; and
| | - Alyssa B Evans
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | - Dinesh M Thekkoot
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | | | - Nick V L Serão
- Department of Animal Sciences, Iowa State University, Ames, IA 50011
| | | | | |
Collapse
|
11
|
Role for Artemis nuclease in the repair of radiation-induced DNA double strand breaks by alternative end joining. DNA Repair (Amst) 2015; 31:29-40. [DOI: 10.1016/j.dnarep.2015.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 11/24/2022]
|
12
|
Functional analysis of naturally occurring DCLRE1C mutations and correlation with the clinical phenotype of ARTEMIS deficiency. J Allergy Clin Immunol 2015; 136:140-150.e7. [PMID: 25917813 DOI: 10.1016/j.jaci.2015.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/04/2015] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND The endonuclease ARTEMIS, which is encoded by the DCLRE1C gene, is a component of the nonhomologous end-joining pathway and participates in hairpin opening during the V(D)J recombination process and repair of a subset of DNA double-strand breaks. Patients with ARTEMIS deficiency usually present with severe combined immunodeficiency (SCID) and cellular radiosensitivity, but hypomorphic mutations can cause milder phenotypes (leaky SCID). OBJECTIVE We sought to correlate the functional effect of human DCLRE1C mutations on phenotypic presentation in patients with ARTEMIS deficiency. METHODS We studied the recombination and DNA repair activity of 41 human DCLRE1C mutations in Dclre1c(-/-) v-abl kinase-transformed pro-B cells retrovirally engineered with a construct that allows quantification of recombination activity by means of flow cytometry. For assessment of DNA repair efficacy, resolution of γH2AX accumulation was studied after ionizing radiation. RESULTS Low or absent activity was detected for mutations causing a typical SCID phenotype. Most of the patients with leaky SCID were compound heterozygous for 1 loss-of-function and 1 hypomorphic allele, with significant residual levels of recombination and DNA repair activity. Deletions disrupting the C-terminus result in truncated but partially functional proteins and are often associated with leaky SCID. Overexpression of hypomorphic mutants might improve the functional defect. CONCLUSIONS Correlation between the nature and location of DCLRE1C mutations, functional activity, and the clinical phenotype has been observed. Hypomorphic variants that have been reported in the general population can be disease causing if combined in trans with a loss-of-function allele. Therapeutic strategies aimed at inducing overexpression of hypomorphic alleles might be beneficial.
Collapse
|
13
|
The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair (Amst) 2014; 17:64-73. [DOI: 10.1016/j.dnarep.2014.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/03/2023]
|
14
|
Lee PP, Woodbine L, Gilmour KC, Bibi S, Cale CM, Amrolia PJ, Veys PA, Davies EG, Jeggo PA, Jones A. The many faces of Artemis-deficient combined immunodeficiency - Two patients with DCLRE1C mutations and a systematic literature review of genotype-phenotype correlation. Clin Immunol 2013; 149:464-74. [PMID: 24230999 DOI: 10.1016/j.clim.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 08/04/2013] [Accepted: 08/07/2013] [Indexed: 12/31/2022]
Abstract
Defective V(D)J recombination and DNA double-strand break (DSB) repair severely impair the development of T-lymphocytes and B-lymphocytes. Most patients manifest a severe combined immunodeficiency during infancy. We report 2 siblings with combined immunodeficiency (CID) and immunodysregulation caused by compound heterozygous Artemis mutations, including an exon 1-3 deletion generating a null allele, and a missense change (p.T71P). Skin fibroblasts demonstrated normal DSB repair by gamma-H2AX analysis, supporting the predicted hypomorphic nature of the p.T71P allele. In addition to these two patients, 12 patients with Artemis-deficient CID were previously reported. All had significant morbidities including recurrent infections, autoimmunity, EBV-associated lymphoma, and carcinoma despite having hypomorphic mutants with residual Artemis expression, V(D)J recombination or DSB repair capacity. Nine patients underwent stem cell transplant and six survived, while four patients who did not receive transplant died. The progressive nature of immunodeficiency and genomic instability accounts for poor survival, and early HSCT should be considered.
Collapse
Affiliation(s)
- Pamela P Lee
- Department of Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Reynolds P, Anderson JA, Harper JV, Hill MA, Botchway SW, Parker AW, O'Neill P. The dynamics of Ku70/80 and DNA-PKcs at DSBs induced by ionizing radiation is dependent on the complexity of damage. Nucleic Acids Res 2012; 40:10821-31. [PMID: 23012265 PMCID: PMC3510491 DOI: 10.1093/nar/gks879] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
DNA double-strand breaks (DSBs) are biologically one of the most important cellular lesions and possess varying degrees of chemical complexity. The notion that the repairability of more chemically complex DSBs is inefficient led to the concept that the extent of DSB complexity underlies the severity of the biological consequences. The repair of DSBs by non-homologous end joining (NHEJ) has been extensively studied but it remains unknown whether more complex DSBs require a different sub-set of NHEJ protein for their repair compared with simple DSBs. To address this, we have induced DSBs in fluorescently tagged mammalian cells (Ku80-EGFP, DNA-PKcs-YFP or XRCC4-GFP, key proteins in NHEJ) using ultra-soft X-rays (USX) or multi-photon near infrared (NIR) laser irradiation. We have shown in real-time that simple DSBs, induced by USX or NIR microbeam irradiation, are repaired rapidly involving Ku70/80 and XRCC4/Ligase IV/XLF. In contrast, DSBs with greater chemical complexity are repaired slowly involving not only Ku70/80 and XRCC4/Ligase IV/XLF but also DNA-PKcs. Ataxia telangiectasia-mutated inhibition only retards repair of the more chemically complex DSBs which require DNA-PKcs. In summary, the repair of DSBs by NHEJ is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB.
Collapse
Affiliation(s)
- Pamela Reynolds
- Department of Oncology, Gray Institute for Radiation Oncology & Biology, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | |
Collapse
|
16
|
Tomicic MT, Kaina B. Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta Rev Cancer 2012; 1835:11-27. [PMID: 23006513 DOI: 10.1016/j.bbcan.2012.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 12/11/2022]
Abstract
Topoisomerase I (TOP1) inhibitors applied in cancer therapy such as topotecan and irinotecan are derivatives of the natural alkaloid camptothecin (CPT). The mechanism of CPT poisoning of TOP1 rests on inhibition of the re-ligation function of the enzyme resulting in the stabilization of the TOP1-cleavable complex. In the presence of CPTs this enzyme-DNA complex impairs transcription and DNA replication, resulting in fork stalling and the formation of DNA double-strand breaks (DSB) in proliferating cells. As with most chemotherapeutics, intrinsic and acquired drug resistance represents a hurdle that limits the success of CPT therapy. Preclinical data indicate that resistance to CPT-based drugs might be caused by factors such as (a) poor drug accumulation in the tumor, (b) high rate of drug efflux, (c) mutations in TOP1 leading to failure in CPT docking, or (d) altered signaling triggered by the drug-TOP1-DNA complex, (e) expression of DNA repair proteins, and (f) failure to activate cell death pathways. This review will focus on the issues (d-f). We discuss degradation of TOP1 as part of the repair pathway in the processing of TOP1 associated DNA damage, give a summary of proteins involved in repair of CPT-induced replication mediated DSB, and highlight the role of p53 and inhibitors of apoptosis proteins (IAPs), particularly XIAP and survivin, in cancer cell resistance to CPT-like chemotherapeutics.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Germany.
| | | |
Collapse
|
17
|
Eppink B, Krawczyk PM, Stap J, Kanaar R. Hyperthermia-induced DNA repair deficiency suggests novel therapeutic anti-cancer strategies. Int J Hyperthermia 2012; 28:509-17. [PMID: 22834701 DOI: 10.3109/02656736.2012.695427] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Local hyperthermia is an effective treatment modality to augment radio- and chemotherapy-based anti-cancer treatments. Although the effect of hyperthermia is pleotropic, recent experiments revealed that homologous recombination, a pathway of DNA repair, is directly inhibited by hyperthermia. The hyperthermia-induced DNA repair deficiency is enhanced by inhibitors of the cellular heat-shock response. Taken together, these results provide the rationale for the development of novel anti-cancer therapies that combine hyperthermia-induced homologous recombination deficiency with the systemic administration of drugs that specifically affect the viability of homologous recombination deficient cells and/or inhibit the heat-shock response, to locally sensitise cancer cells to DNA damaging agents.
Collapse
Affiliation(s)
- Berina Eppink
- Department of Cell Biology and Genetics, Cancer Genomics Centre, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
18
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
19
|
Datta K, Purkayastha S, Neumann RD, Winters TA. An in vitro DNA double-strand break repair assay based on end-joining of defined duplex oligonucleotides. Methods Mol Biol 2012; 920:485-500. [PMID: 22941624 PMCID: PMC3506396 DOI: 10.1007/978-1-61779-998-3_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
DNA double-strand breaks (DSBs) are caused by endogenous cellular processes such as oxidative metabolism, or by exogenous events like exposure to ionizing radiation or other genotoxic agents. Repair of these DSBs is essential for the maintenance of cellular genomic integrity. In human cells, and cells of other higher eukaryotes, DSBs are primarily repaired by the nonhomologous end-joining (NHEJ) DSB repair pathway. Most in vitro assays that have been designed to measure NHEJ activity employ linear plasmid DNA as end-joining substrates, and such assays have made significant contributions to our understanding of the biochemical mechanisms of NHEJ. Here we describe an in vitro end-joining assay employing linear oligonucleotides that has distinct advantages over plasmid-based assays for the study of structure-function relationships between the proteins of the NHEJ pathway and synthetic DNA end-joining substrates possessing predetermined DSB configurations and chemistries.
Collapse
Affiliation(s)
- Kamal Datta
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, USA
| | | | | | | |
Collapse
|
20
|
Liu H, Sun X, Zhang S, Ge W, Zhu Y, Zhang J, Zheng S. The dominant negative mutant Artemis enhances tumor cell radiosensitivity. Radiother Oncol 2011; 101:66-72. [PMID: 21641068 DOI: 10.1016/j.radonc.2011.05.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 04/10/2011] [Accepted: 05/11/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Tumor radioresistance often leads to treatment failure during radiotherapy. New strategies like developing radiosensitizer are clinically important. Intervention with DNA double-strand break repair is an effective way to modulate tumor cell radiosensitivity. This study focused on the mutant Artemis fragment-enhanced radiosensitivity of human cervical cancer cells. MATERIAL AND METHODS We constructed two pEGFP-C1-based eukaryotic expression vectors encoding full-length and the mutant Artemis fragment (D37N-413aa), respectively. HeLa cells were stably transfected with these plasmids or vector. Cell survival was measured by the clonogenic assay. The γH2AX foci assay was used to monitor DNA repair after irradiation. Co-immunoprecipitation and Western blot analysis were performed to study protein interaction and phosphorylation of Artemis. RESULTS Expression of the mutant Artemis fragment (D37N-413aa) delayed DNA DSB rejoining after irradiation, thereby enhanced radiosensitivity of HeLa cell. Further experiments indicate that this mutant Artemis fragment bind to DNA-PKcs and ATM, inhibited phosphorylation of endogenous Artemis, the key molecule for DNA repair and cell radiosensitivity. CONCLUSIONS The dominant negative mutant Artemis fragment (D37N-413aa) enhanced tumor cell radiosensitivity through blocking activity of endogenous Artemis and DNA repair. It is the first time to modulate tumor cell radiosensitivity via targeting Artemis. This novel mechanism of radiosensitivity strongly suggests the potential role of Artemis in cancer therapy.
Collapse
Affiliation(s)
- Hai Liu
- Cancer Institute, Zhejiang University School of Medicine, The Second Affiliated Hospital, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Hsu DW, Kiely R, Couto CAM, Wang HY, Hudson JJR, Borer C, Pears CJ, Lakin ND. DNA double-strand break repair pathway choice in Dictyostelium. J Cell Sci 2011; 124:1655-63. [DOI: 10.1242/jcs.081471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
DNA double-strand breaks (DSBs) can be repaired by homologous recombination (HR) or non-homologous end joining (NHEJ). The mechanisms that govern whether a DSB is repaired by NHEJ or HR remain unclear. Here, we characterise DSB repair in the amoeba Dictyostelium. HR is the principal pathway responsible for resistance to DSBs during vegetative cell growth, a stage of the life cycle when cells are predominantly in G2. However, we illustrate that restriction-enzyme-mediated integration of DNA into the Dictyostelium genome is possible during this stage of the life cycle and that this is mediated by an active NHEJ pathway. We illustrate that Dclre1, a protein with similarity to the vertebrate NHEJ factor Artemis, is required for NHEJ independently of DNA termini complexity. Although vegetative dclre1− cells are not radiosensitive, they exhibit delayed DSB repair, further supporting a role for NHEJ during this stage of the life cycle. By contrast, cells lacking the Ku80 component of the Ku heterodimer that binds DNA ends to facilitate NHEJ exhibit no such defect and deletion of ku80 suppresses the DSB repair defect of dclre1− cells through increasing HR efficiency. These data illustrate a functional NHEJ pathway in vegetative Dictyostelium and the importance of Ku in regulating DSB repair choice during this phase of the life cycle.
Collapse
Affiliation(s)
- Duen-Wei Hsu
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Rhian Kiely
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - C. Anne-Marie Couto
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Hong-Yu Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Jessica J. R. Hudson
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Christine Borer
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Catherine J. Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Nicholas D. Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| |
Collapse
|
22
|
Katsube T, Mori M, Tsuji H, Shiomi T, Shiomi N, Onoda M. Differences in sensitivity to DNA-damaging Agents between XRCC4- and Artemis-deficient human cells. JOURNAL OF RADIATION RESEARCH 2011; 52:415-424. [PMID: 21785230 DOI: 10.1269/jrr.10168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Non-homologous end-joining (NHEJ) is the predominant pathway for the repair of DNA double-strand breaks (DSBs) in human cells. XRCC4 is indispensable to NHEJ and functions together with DNA ligase IV in the rejoining of broken DNA ends. Artemis is a nuclease required for trimming of some, but not all, types of broken DNA ends prior to rejoining by the DNA ligase IV/XRCC4 complex. To better understand the roles of these factors, we generated XRCC4- and Artemis-deficient cells from the human colon adenocarcinoma cell line HCT116 by gene targeting and examined their cellular responses to several DNA-damaging agents including X-rays. As anticipated, kinetic analyses of γ-H2AX foci and chromosomal aberrations after ionizing radiation (IR) demonstrated a serious incompetence of DSB repair in the XRCC4-deficient cells, and relatively moderate impairment in the Artemis-deficient cells. The XRCC4-deficient cells were highly sensitive to etoposide and 5-fluoro-2'-deoxyuridine as well as IR, and moderately sensitive to camptothecin, methyl methanesulfonate, cisplatin, mitomycin C, aphidicolin and hydroxyurea, compared to the parental HCT116 cells. The Artemis-deficient cells were not as sensitive as the XRCC4-deficient cells, except to cisplatin and mitomycin C. By contrast, the Artemis-deficient cells were significantly more resistant to hydroxyurea than the parental cells. These observations suggest that Artemis also functions in some DNA damage response pathways other than NHEJ in human cells.
Collapse
Affiliation(s)
- Takanori Katsube
- Radiation Effect Mechanisms Research Group, Research Center for Radiation Protection, International Open laboratory, National Institute of Radiological Sciences, Anagawa, Inage-ku, Chiba-shi, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Jacobs C, Huang Y, Masud T, Lu W, Westfield G, Giblin W, Sekiguchi JM. A hypomorphic Artemis human disease allele causes aberrant chromosomal rearrangements and tumorigenesis. Hum Mol Genet 2010; 20:806-19. [PMID: 21147755 DOI: 10.1093/hmg/ddq524] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Artemis gene encodes a DNA nuclease that plays important roles in non-homologous end-joining (NHEJ), a major double-strand break (DSB) repair pathway in mammalian cells. NHEJ factors repair general DSBs as well as programmed breaks generated during the lymphoid-specific DNA rearrangement, V(D)J recombination, which is required for lymphocyte development. Mutations that inactivate Artemis cause a human severe combined immunodeficiency syndrome associated with cellular radiosensitivity. In contrast, hypomorphic Artemis mutations result in combined immunodeficiency syndromes of varying severity, but, in addition, are hypothesized to predispose to lymphoid malignancy. To elucidate the distinct molecular defects caused by hypomorphic compared with inactivating Artemis mutations, we examined tumor predisposition in a mouse model harboring a targeted partial loss-of-function disease allele. We find that, in contrast to Artemis nullizygosity, the hypomorphic mutation leads to increased aberrant intra- and interchromosomal V(D)J joining events. We also observe that dysfunctional Artemis activity combined with p53 inactivation predominantly predisposes to thymic lymphomas harboring clonal translocations distinct from those observed in Artemis nullizygosity. Thus, the Artemis hypomorphic allele results in unique molecular defects, tumor spectrum and oncogenic chromosomal rearrangements. Our findings have significant implications for disease outcomes and treatment of patients with different Artemis mutations.
Collapse
Affiliation(s)
- Cheryl Jacobs
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Goodarzi AA, Jeggo P, Lobrich M. The influence of heterochromatin on DNA double strand break repair: Getting the strong, silent type to relax. DNA Repair (Amst) 2010; 9:1273-82. [PMID: 21036673 DOI: 10.1016/j.dnarep.2010.09.013] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2010] [Indexed: 01/11/2023]
Abstract
DNA non-homologous end-joining (NHEJ) and homologous recombination (HR) represent the major DNA double strand break (DSB) pathways in mammalian cells, whilst ataxia telangiectasia mutated (ATM) lies at the core of the DSB signalling response. ATM signalling plays a major role in modifying chromatin structure in the vicinity of the DSB and increasing evidence suggests that this function influences the DSB rejoining process. DSBs have long been known to be repaired with two (or more) component kinetics. The majority (∼85%) of DSBs are repaired with fast kinetics in a predominantly ATM-independent manner. In contrast, ∼15% of radiation-induced DSBs are repaired with markedly slower kinetics via a process that requires ATM and those mediator proteins, such as MDC1 or 53BP1, that accumulate at ionising radiation induced foci (IRIF). DSBs repaired with slow kinetics predominantly localise to the periphery of genomic heterochromatin (HC). Indeed, there is mounting evidence that chromatin complexity and not damage complexity confers slow DSB repair kinetics. ATM's role in HC-DSB repair involves the direct phosphorylation of KAP-1, a key HC formation factor. KAP-1 phosphorylation (pKAP-1) arises in both a pan-nuclear and a focal manner after radiation and ATM-dependent pKAP-1 is essential for DSB repair within HC regions. Mediator proteins such as 53BP1, which are also essential for HC-DSB repair, are expendable for pan-nuclear pKAP-1 whilst being essential for pKAP-1 formation at IRIF. Data suggests that the essential function of the mediator proteins is to promote the retention of activated ATM at DSBs, concentrating the phosphorylation of KAP-1 at HC DSBs. DSBs arising in G2 phase are also repaired with fast and slow kinetics but, in contrast to G0/G1 where they all DSBs are repaired by NHEJ, the slow component of DSB repair in G2 phase represents an HR process involving the Artemis endonuclease. Results suggest that whilst NHEJ repairs the majority of DSBs in G2 phase, Artemis-dependent HR uniquely repairs HC DSBs. Collectively, these recent studies highlight not only how chromatin complexity influences the factors required for DSB repair but also the pathway choice.
Collapse
Affiliation(s)
- Aaron A Goodarzi
- Genome Damage and Stability Centre, University of Sussex, East Sussex BN1 9RQ, United Kingdom
| | | | | |
Collapse
|
25
|
Bahmed K, Seth A, Nitiss KC, Nitiss JL. End-processing during non-homologous end-joining: a role for exonuclease 1. Nucleic Acids Res 2010; 39:970-8. [PMID: 20935051 PMCID: PMC3035470 DOI: 10.1093/nar/gkq886] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Non-homologous end-joining (NHEJ) is a critical error-prone pathway of double strand break repair. We recently showed that tyrosyl DNA phosphodiesterase 1 (Tdp1) regulates the accuracy of NHEJ repair junction formation in yeast. We assessed the role of other enzymes in the accuracy of junction formation using a plasmid repair assay. We found that exonuclease 1 (Exo1) is important in assuring accurate junction formation during NHEJ. Like tdp1Δ mutants, exo1Δ yeast cells repairing plasmids with 5′-extensions can produce repair junctions with templated insertions. We also found that exo1Δ mutants have a reduced median size of deletions when joining DNA with blunt ends. Surprisingly, exo1Δ pol4Δ mutants repair blunt ends with a very low frequency of deletions. This result suggests that there are multiple pathways that process blunt ends prior to end-joining. We propose that Exo1 acts at a late stage in end-processing during NHEJ. Exo1 can reverse nucleotide additions occurring due to polymerization, and may also be important for processing ends to expose microhomologies needed for NHEJ. We propose that accurate joining is controlled at two steps, a first step that blocks modification of DNA ends, which requires Tdp1, and a second step that occurs after synapsis that requires Exo1.
Collapse
Affiliation(s)
- Karim Bahmed
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
26
|
Yan Y, Akhter S, Zhang X, Legerski R. The multifunctional SNM1 gene family: not just nucleases. Future Oncol 2010; 6:1015-29. [PMID: 20528238 DOI: 10.2217/fon.10.47] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
27
|
Cattell E, Sengerová B, McHugh PJ. The SNM1/Pso2 family of ICL repair nucleases: from yeast to man. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:635-645. [PMID: 20175117 DOI: 10.1002/em.20556] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Efficient interstrand crosslink (ICL) repair in yeast depends on the Pso2/Snm1 protein. Pso2 is a member of the highly conserved metallo-beta-lactamase structural family of nucleases. Mammalian cells possess three SNM1/Pso2 related proteins, SNM1A, SNM1B/Apollo, and SNM1C/Artemis. Evidence that SNM1A and SNM1B contribute to ICL repair is mounting, whereas Artemis appears to primarily contribute to non-ICL repair pathways, particularly some double-strand break repair events. Yeast Pso2 and all three mammalian SNM1-family proteins have been shown to possess nuclease activity. Here, we review the biochemical, genetic, and cellular evidence for the SNM1 family as DNA repair factors, focusing on ICL repair.
Collapse
Affiliation(s)
- Emma Cattell
- Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | |
Collapse
|
28
|
Abstract
Background Repair of DNA double strand breaks by non-homologous end joining (NHEJ) requires several proteins including Ku, DNA-PKcs, Artemis, XRCC4, Ligase IV and XLF. Two of these proteins, namely Ku and DNA-PKcs, are also involved in maintenance of telomeres, chromosome end-structures. In contrast, cells defective in Ligase IV and XRCC4 do not show changes in telomere length or function suggesting that these proteins are not involved in telomere maintenance. Since a mouse study indicated that defective Artemis may cause telomere dysfunction we investigated the effects of defective Artemis on telomere maintenance in human cells. Results We observed significantly elevated frequencies of telomeric fusions in two primary fibroblast cell lines established from Artemis defective patients relative to the control cell line. The frequencies of telomeric fusions increased after exposure of Artemis defective cells to ionizing radiation. Furthermore, we observed increased incidence of DNA damage at telomeres in Artemis defective cells that underwent more than 32 population doublings using the TIF (Telomere dysfunction Induced Foci) assay. We have also inhibited the expression levels of DNA-PKcs in Artemis defective cell lines by either using synthetic inhibitor (IC86621) or RNAi and observed their greater sensitivity to telomere dysfunction relative to control cells. Conclusion These results suggest that defective Artemis causes a mild telomere dysfunction phenotype in human cell lines.
Collapse
|
29
|
A novel radiosensitive SCID patient with a pronounced G2/M sensitivity. DNA Repair (Amst) 2010; 9:365-73. [DOI: 10.1016/j.dnarep.2009.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 11/26/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022]
|
30
|
Pannicke U, Hönig M, Schulze I, Rohr J, Heinz GA, Braun S, Janz I, Rump EM, Seidel MG, Matthes-Martin S, Soerensen J, Greil J, Stachel DK, Belohradsky BH, Albert MH, Schulz A, Ehl S, Friedrich W, Schwarz K. The most frequentDCLRE1C(ARTEMIS) mutations are based on homologous recombination events. Hum Mutat 2010; 31:197-207. [DOI: 10.1002/humu.21168] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Beucher A, Birraux J, Tchouandong L, Barton O, Shibata A, Conrad S, Goodarzi AA, Krempler A, Jeggo PA, Löbrich M. ATM and Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J 2009; 28:3413-27. [PMID: 19779458 PMCID: PMC2752027 DOI: 10.1038/emboj.2009.276] [Citation(s) in RCA: 406] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 08/06/2009] [Indexed: 01/03/2023] Open
Abstract
Homologous recombination (HR) and non-homologous end joining (NHEJ) represent distinct pathways for repairing DNA double-strand breaks (DSBs). Previous work implicated Artemis and ATM in an NHEJ-dependent process, which repairs a defined subset of radiation-induced DSBs in G1-phase. Here, we show that in G2, as in G1, NHEJ represents the major DSB-repair pathway whereas HR is only essential for repair of approximately 15% of X- or gamma-ray-induced DSBs. In addition to requiring the known HR proteins, Brca2, Rad51 and Rad54, repair of radiation-induced DSBs by HR in G2 also involves Artemis and ATM suggesting that they promote NHEJ during G1 but HR during G2. The dependency for ATM for repair is relieved by depleting KAP-1, providing evidence that HR in G2 repairs heterochromatin-associated DSBs. Although not core HR proteins, ATM and Artemis are required for efficient formation of single-stranded DNA and Rad51 foci at radiation-induced DSBs in G2 with Artemis function requiring its endonuclease activity. We suggest that Artemis endonuclease removes lesions or secondary structures, which inhibit end resection and preclude the completion of HR or NHEJ.
Collapse
Affiliation(s)
- Andrea Beucher
- Darmstadt University of Technology, Radiation Biology and DNA Repair, Darmstadt, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S. Assessing cancer risks of low-dose radiation. Nat Rev Cancer 2009; 9:596-604. [PMID: 19629073 DOI: 10.1038/nrc2677] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ionizing radiation is considered a non-threshold carcinogen. However, quantifying the risk of the more commonly encountered low and/or protracted radiation exposures remains problematic and subject to uncertainty. Therefore, a major challenge lies in providing a sound mechanistic understanding of low-dose radiation carcinogenesis. This Perspective article considers whether differences exist between the effects mediated by high- and low-dose radiation exposure and how this affects the assessment of low-dose cancer risk.
Collapse
Affiliation(s)
- Leon Mullenders
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden 2300RC, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Mladenov E, Kalev P, Anachkova B. The complexity of double-strand break ends is a factor in the repair pathway choice. Radiat Res 2009; 171:397-404. [PMID: 19397440 DOI: 10.1667/rr1487.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The repair of double-strand breaks in mammalian cells is carried out by two pathways: homologous recombination and nonhomologous end joining. The factors that regulate the mechanism through which a specific repair pathway is activated are still not clearly defined. To study whether the complexity of the double-strand break ends is a factor that determines the choice of the repair pathway, we examined the involvement of homologous recombination by the formation of Rad51 foci in human HeLa cells treated with bleomycin and ionizing radiation. The quantity of double-strand breaks was determined by gel electrophoresis and the formation of gamma-H2AX foci. Two hours after treatment with low doses of the agents that induced similar quantities of double-strand breaks that could be repaired effectively by the cells, Rad51 foci were observed only in the irradiated cells. Rad51 foci appeared in bleomycin-treated cells after prolonged exposure to the drug when the cells were arrested in the G2 phase of the cell cycle. Since bleomycin produces double-strand breaks that are less complex than the breaks induced by ionizing radiation, these results indicate that the complexity of the break ends is a factor in the choice of repair pathway and that homologous recombination is recruited in the repair of breaks with more complex multiply damaged ends during the late S and G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | |
Collapse
|
34
|
Abstract
Recent molecular studies have expanded the biological contexts in which topoisomerase II (TOP2) has crucial functions, including DNA replication, transcription and chromosome segregation. Although the biological functions of TOP2 are important for ensuring genomic integrity, the ability to interfere with TOP2 and generate enzyme-mediated DNA damage is an effective strategy for cancer chemotherapy. The molecular tools that have allowed an understanding of the biological functions of TOP2 are also being applied to understanding the details of drug action. These studies promise refined targeting of TOP2 as an effective anticancer strategy.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
35
|
Abstract
V(D)J recombination not only comprises the molecular mechanism that insures diversity of the immune system but also constitutes a critical checkpoint in the developmental program of B- and T-lymphocytes. The analysis of human patients with Severe Combined Immune Deficiency (SCID) has contributed to the understanding of the biochemistry of the V(D)J recombination reaction. The molecular study V(D)J recombination settings in humans, mice and in cellular mutants has allowed to unravel the process of Non Homologous End Joining (NHEJ), one of the key pathway that insure proper repair of DNA double strand breaks (dsb), whether they occur during V(D)J recombination or secondary to other DNA injuries. Two NHEJ factors, Artemis and Cernunnos, were indeed discovered through the study of human V(D)J recombination defective human SCID patients.
Collapse
|
36
|
Chistiakov DA, Voronova NV, Chistiakov PA. Genetic variations in DNA repair genes, radiosensitivity to cancer and susceptibility to acute tissue reactions in radiotherapy-treated cancer patients. Acta Oncol 2008; 47:809-24. [PMID: 18568480 DOI: 10.1080/02841860801885969] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ionizing radiation is a well established carcinogen for human cells. At low doses, radiation exposure mainly results in generation of double strand breaks (DSBs). Radiation-related DSBs could be directly linked to the formation of chromosomal rearrangements as has been proven for radiation-induced thyroid tumors. Repair of DSBs presumably involves two main pathways, non-homologous end joining (NHEJ) and homologous recombination (HR). A number of known inherited syndromes, such as ataxia telangiectasia, ataxia-telangiectasia like-disorder, radiosensitive severe combined immunodeficiency, Nijmegen breakage syndrome, and LIG4 deficiency are associated with increased radiosensitivity and/or cancer risk. Many of them are caused by mutations in DNA repair genes. Recent studies also suggest that variations in the DNA repair capacity in the general population may influence cancer susceptibility. In this paper, we summarize the current status of DNA repair proteins as potential targets for radiation-induced cancer risk. We will focus on genetic alterations in genes involved in HR- and NHEJ-mediated repair of DSBs, which could influence predisposition to radiation-related cancer and thereby explain interindividual differences in radiosensitivity or radioresistance in a general population.
Collapse
|
37
|
Benjelloun F, Garrigue A, Demerens-de Chappedelaine C, Soulas-Sprauel P, Malassis-Séris M, Stockholm D, Hauer J, Blondeau J, Rivière J, Lim A, Le Lorc'h M, Romana S, Brousse N, Pâques F, Galy A, Charneau P, Fischer A, de Villartay JP, Cavazzana-Calvo M. Stable and Functional Lymphoid Reconstitution in Artemis-deficient Mice Following Lentiviral Artemis Gene Transfer Into Hematopoietic Stem Cells. Mol Ther 2008; 16:1490-9. [DOI: 10.1038/mt.2008.118] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
38
|
Abstract
Rejoining of broken chromosomes is crucial for cell survival and prevention of malignant transformation. Most mammalian cells rely primarily on the non-homologous end-joining pathway of DNA double-strand break (DSB) repair to accomplish this task. This review focuses both on the core non-homologous end-joining machinery, which consists of DNA-dependent protein kinase and the ligase IV/XRCC4 complex, and on accessory factors that facilitate rejoining of a subset of the DSBs. We discuss how the ATM protein kinase and the Mre11/Rad50/Nbs1 complex might function in DSB repair and what role ionizing radiation-induced foci may play in this process.
Collapse
|
39
|
V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 2007; 26:7780-91. [DOI: 10.1038/sj.onc.1210875] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Barcelos GRM, Shimabukuro F, Maciel MAM, Cólus IMS. Genotoxicity and antigenotoxicity of cashew (Anacardium occidentale L.) in V79 cells. Toxicol In Vitro 2007; 21:1468-75. [PMID: 17706911 DOI: 10.1016/j.tiv.2007.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 06/04/2007] [Accepted: 06/10/2007] [Indexed: 11/17/2022]
Abstract
The use of plants for the treatment of diseases continues to rise although there are few studies providing proof of these effects. One of these plants is the Anacardium occidentale, popularly known as the cashew. The present study evaluated the possible genotoxic and protective activities of cashew stem bark methanolic extract, in vitro, using methyl methanesulfonate (MMS) as a positive control, to compare possible mechanisms of DNA damage induction in the Comet assay. The antigenotoxicity protocols used were pre, simultaneous and post-treatment in relation to MMS. In genotoxicity and antigenotoxicity assessments, besides MMS, PBS was used as the negative control and three concentrations of the A. occidentale extract (500 microg/mL, 1000 microg/mL and 2000 microg/mL) were used on Chinese hamster lung fibroblasts (V79 cells). The Comet assay revealed that the two lowest concentrations tested presented no genotoxic activity, whereas the highest presented genotoxicity. All of the concentrations showed protective activity in simultaneous and post-treatment in relation to MMS. Further studies are required to identify the substances that comprise the extract and more clearly comprehend the antigenotoxic mechanism detected in this study.
Collapse
Affiliation(s)
- G R M Barcelos
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid km 380, 86051-990 Londrina, Paraná, Brazil.
| | | | | | | |
Collapse
|
41
|
Abstract
DNA damage responses (DDR) encompass DNA repair and signal transduction pathways that effect cell cycle checkpoint arrest and/or apoptosis. How DDR pathways respond to low levels of DNA damage, including low doses of ionizing radiation, is crucial for assessing environmental cancer risk. It has been assumed that damage-induced cell cycle checkpoints respond to a single double strand break (DSB) but the G2/M checkpoint, which prevents entry into mitosis, has recently been shown to have a defined threshold of 10-20 DSBs. Here, we consider the impact of a negligent G2/M checkpoint on genomic stability and cancer risk.
Collapse
Affiliation(s)
- Markus Löbrich
- Darmstadt University of Technology, Radiation Biology and DNA Repair, 64287 Darmstadt, Germany.
| | | |
Collapse
|
42
|
Kegel P, Riballo E, Kühne M, Jeggo PA, Löbrich M. X-irradiation of cells on glass slides has a dose doubling impact. DNA Repair (Amst) 2007; 6:1692-7. [PMID: 17644493 DOI: 10.1016/j.dnarep.2007.05.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 05/31/2007] [Indexed: 11/19/2022]
Abstract
Immunofluorescence detection of gammaH2AX foci is a widely used tool to quantify the induction and repair of DNA double-strand breaks (DSBs) induced by ionising radiation. We observed that X-irradiation of mammalian cells exposed on glass slides induced twofold higher foci numbers compared to irradiation with gamma-rays. Here, we show that the excess gammaH2AX foci after X-irradiation are produced from secondary radiation particles generated from the irradiation of glass slides. Both 120 kV X-rays and (137)Cs gamma-rays induce approximately 20 gammaH2AX foci per Gy in cells growing on thin ( approximately 2 microm) plastic foils immersed in water. The same yield is obtained following gamma-irradiation of cells growing on glass slides. However, 120 kV X-rays produce approximately 40 gammaH2AX foci per Gy in cells growing on glass, twofold greater than obtained using cells irradiated on plastic surfaces. The same increase in gammaH2AX foci number is obtained if the plastic foil on which the cells are grown is irradiated on a glass slide. Thus, the physical proximity to the glass material and not morphological differences of cells growing on different surfaces accounts for the excess gammaH2AX foci. The increase in foci number depends on the energy and is considerably smaller for 25 kV relative to 120 kV X-rays, a finding which can be explained by known physical properties of radiation. The kinetics for the loss of foci, which is taken to represent the rate of DSB repair, as well as the Artemis dependent repair fraction, was similar following X- or gamma-irradiation, demonstrating that DSBs induced by this range of treatments are repaired in an identical manner.
Collapse
Affiliation(s)
- Peter Kegel
- Fachrichtung Biophysik, Universität des Saarlandes, 66421 Homburg/Saar, Germany
| | | | | | | | | |
Collapse
|