1
|
Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB, Han Q, Liu X, Chen XY, He Z. Sub-Minimum Inhibitory Concentrations of Rhubarb Water Extracts Inhibit Streptococcus suis Biofilm Formation. Front Pharmacol 2017; 8:425. [PMID: 28736523 PMCID: PMC5500959 DOI: 10.3389/fphar.2017.00425] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus suis is one of the most important swine pathogens, which can cause persistent infection by forming biofilms. In this study, sub-minimum inhibitory concentration (sub-MIC) of rhubarb water extracts were found to inhibit biofilm formation. Two-component signal transduction systems (TCSs), transcriptional regulators, and DNA binding proteins were compared under two conditions: (1) cells treated with sub-MIC rhubarb water extracts and (2) untreated cells. Using an isobaric tags for relative and absolute quantitation (iTRAQ) strategy, we found that TCSs constituent proteins of histidine kinase and response regulator were significantly down-regulated. This down-regulation can affect the transfer of information during biofilm formation. The transcriptional regulators and DNA binding proteins that can interact with TCSs and interrupt gene transcription were also significantly altered. For these reasons, the levels of protein expressions varied in different parts of the treated vs. untreated cells. In summary, rhubarb water extracts might serve as potential inhibitor for the control of S. suis biofilm formation. The change in TCSs, transcriptional regulators, and DNA binding proteins may be important factors in S. suis biofilm inhibition.
Collapse
Affiliation(s)
- Wen-Ya Ding
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Hua Li
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - He Lian
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| | - Xiao-Yu Ai
- School of Pharmacy, Nankai UniversityTianjin, China
| | - Yu-Lin Zhao
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Yan-Bei Yang
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Qiang Han
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China.,Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xin Liu
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Xue-Ying Chen
- Department of Veterinary Medicine, Northeast Agricultural UniversityHarbin, China
| | - Zhonggui He
- Department of Pharmacy, Shenyang Pharmaceutical UniversityShenyang, China
| |
Collapse
|
2
|
Ananda G, Walsh E, Jacob KD, Krasilnikova M, Eckert KA, Chiaromonte F, Makova KD. Distinct mutational behaviors differentiate short tandem repeats from microsatellites in the human genome. Genome Biol Evol 2013; 5:606-20. [PMID: 23241442 PMCID: PMC3622297 DOI: 10.1093/gbe/evs116] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A tandem repeat's (TR) propensity to mutate increases with repeat number, and can become very pronounced beyond a critical boundary, transforming it into a microsatellite (MS). However, a clear understanding of the mutational behavior of different TR classes and motifs and related mechanisms is lacking, as is a consensus on the existence of a boundary separating short TRs (STRs) from MSs. This hinders our understanding of MSs' mutational properties and their effective use as genetic markers. Using indel calls for 179 individuals from 1000 Genomes Pilot-1 Project, we determined polymorphism incidence for four major TR classes, and formalized its varying relationship with repeat number using segmented regression. We observed a biphasic regime with a transition from a faster to a slower exponential growth at 9, 5, 4, and 4 repeats for mono-, di-, tri-, and tetranucleotide TRs, respectively. We used an in vitro mutagenesis assay to evaluate the contribution of strand slippage errors to mutability. STRs and MSs differ in their absolute polymorphism levels, but more importantly in their rates of mutability growth. Although strand slippage is a major factor driving mononucleotide polymorphism incidence, dinucleotide polymorphism incidence is greater than that expected due to strand slippage alone, indicating that additional cellular factors might be driving dinucleotide mutability in the human genome. Leveraging on hundreds of human genomes, we present the first comprehensive, genome-wide analysis of TR mutational behavior, encompassing several motif sizes and compositions.
Collapse
Affiliation(s)
- Guruprasad Ananda
- Integrative Biosciences, Bioinformatics and Genomics Option, Pennsylvania State University, PA, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Sharma A, Kottur J, Narayanan N, Nair DT. A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res 2013; 41:5104-14. [PMID: 23525461 PMCID: PMC3643571 DOI: 10.1093/nar/gkt146] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Y-family DNA polymerase IV or PolIV (Escherichia coli) is the founding member of the DinB family and is known to play an important role in stress-induced mutagenesis. We have determined four crystal structures of this enzyme in its pre-catalytic state in complex with substrate DNA presenting the four possible template nucleotides that are paired with the corresponding incoming nucleotide triphosphates. In all four structures, the Ser42 residue in the active site forms interactions with the base moieties of the incipient Watson–Crick base pair. This residue is located close to the centre of the nascent base pair towards the minor groove. In vitro and in vivo assays show that the fidelity of the PolIV enzyme increases drastically when this Ser residue was mutated to Ala. In addition, the structure of PolIV with the mismatch A:C in the active site shows that the Ser42 residue plays an important role in stabilizing dCTP in a conformation compatible with catalysis. Overall, the structural, biochemical and functional data presented here show that the Ser42 residue is present at a strategic location to stabilize mismatches in the PolIV active site, and thus facilitate the appearance of transition and transversion mutations.
Collapse
Affiliation(s)
- Amit Sharma
- National Centre for Biological Sciences (NCBS-TIFR), UAS-GKVK Campus, Bellary Road, Bangalore 560065, India
| | | | | | | |
Collapse
|
4
|
Kiritsi D, He Y, Pasmooij AMG, Onder M, Happle R, Jonkman MF, Bruckner-Tuderman L, Has C. Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination. J Clin Invest 2012; 122:1742-6. [PMID: 22466645 DOI: 10.1172/jci61976] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/15/2012] [Indexed: 11/17/2022] Open
Abstract
Spontaneous gene repair, also called revertant mosaicism, has been documented in several genetic disorders involving organs that undergo self-regeneration, including the skin. Genetic reversion may occur through different mechanisms, and in a single individual, the mutation can be repaired in various ways. Here we describe a disseminated pattern of revertant mosaicism observed in 6 patients with Kindler syndrome (KS), a genodermatosis caused by loss of kindlin-1 (encoded by FERMT1) and clinically characterized by patchy skin pigmentation and atrophy. All patients presented duplication mutations (c.456dupA and c.676dupC) in FERMT1, and slipped mispairing in direct nucleotide repeats was identified as the reversion mechanism in all investigated revertant skin spots. The sequence around the mutations demonstrated high propensity to mutations, favoring both microinsertions and microdeletions. Additionally, in some revertant patches, mitotic recombination generated areas with homozygous normal keratinocytes. Restoration of kindlin-1 expression led to clinically and structurally normal skin. Since loss of kindlin-1 severely impairs keratinocyte proliferation, we predict that revertant cells have a selective advantage that allows their clonal expansion and, consequently, the improvement of the skin condition.
Collapse
Affiliation(s)
- Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Azuma Y, Hosoyama A, Matsutani M, Furuya N, Horikawa H, Harada T, Hirakawa H, Kuhara S, Matsushita K, Fujita N, Shirai M. Whole-genome analyses reveal genetic instability of Acetobacter pasteurianus. Nucleic Acids Res 2009; 37:5768-83. [PMID: 19638423 PMCID: PMC2761278 DOI: 10.1093/nar/gkp612] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Acetobacter species have been used for brewing traditional vinegar and are known to have genetic instability. To clarify the mutability, Acetobacter pasteurianus NBRC 3283, which forms a multi-phenotype cell complex, was subjected to genome DNA sequencing. The genome analysis revealed that there are more than 280 transposons and five genes with hyper-mutable tandem repeats as common features in the genome consisting of a 2.9-Mb chromosome and six plasmids. There were three single nucleotide mutations and five transposon insertions in 32 isolates from the cell complex. The A. pasteurianus hyper-mutability was applied for breeding a temperature-resistant strain grown at an unviable high-temperature (42°C). The genomic DNA sequence of a heritable mutant showing temperature resistance was analyzed by mutation mapping, illustrating that a 92-kb deletion and three single nucleotide mutations occurred in the genome during the adaptation. Alpha-proteobacteria including A. pasteurianus consists of many intracellular symbionts and parasites, and their genomes show increased evolution rates and intensive genome reduction. However, A. pasteurianus is assumed to be a free-living bacterium, it may have the potentiality to evolve to fit in natural niches of seasonal fruits and flowers with other organisms, such as yeasts and lactic acid bacteria.
Collapse
Affiliation(s)
- Yoshinao Azuma
- Department of Microbiology and Immunology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eckert KA, Hile SE. Every microsatellite is different: Intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol Carcinog 2009; 48:379-88. [PMID: 19306292 DOI: 10.1002/mc.20499] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microsatellite sequences are ubiquitous in the human genome and are important regulators of genome function. Here, we examine the mutational mechanisms governing the stability of highly abundant mono-, di-, and tetranucleotide microsatellites. Microsatellite mutation rate estimates from pedigree analyses and experimental models range from a low of approximately 10(-6) to a high of approximately 10(-2) mutations per locus per generation. The vast majority of observed mutational variation can be attributed to features intrinsic to the allele itself, including motif size, length, and sequence composition. A greater than linear relationship between motif length and mutagenesis has been observed in several model systems. Motif sequence differences contribute up to 10-fold to the variation observed in human cell mutation rates. The major mechanism of microsatellite mutagenesis is strand slippage during DNA synthesis. DNA polymerases produce errors within microsatellites at a frequency that is 10- to 100-fold higher than the frequency of frameshifts in coding sequences. Motif sequence significantly affects both polymerase error rate and specificity, resulting in strand biases within complementary microsatellites. Importantly, polymerase errors within microsatellites include base substitutions, deletions, and complex mutations, all of which produced interrupted alleles from pure microsatellites. Postreplication mismatch repair efficiency is affected by microsatellite motif size and sequence, also contributing to the observed variation in microsatellite mutagenesis. Inhibition of DNA synthesis within common microsatellites is highly sequence-dependent, and is positively correlated with the production of errors. DNA secondary structure within common microsatellites can account for some DNA polymerase pause sites, and may be an important factor influencing mutational specificity.
Collapse
Affiliation(s)
- Kristin A Eckert
- Department of Pathology, The Jake Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, PA, USA
| | | |
Collapse
|
7
|
Shah SN, Eckert KA. Human postmeiotic segregation 2 exhibits biased repair at tetranucleotide microsatellite sequences. Cancer Res 2009; 69:1143-9. [PMID: 19155293 DOI: 10.1158/0008-5472.can-08-3499] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mismatch repair (MMR) system plays a major role in removing DNA polymerization errors, and loss of this pathway results in hereditary cancers characterized by microsatellite instability. We investigated microsatellite stability during DNA replication within human postmeiotic segregation 2 (hPMS2)-deficient and proficient human lymphoblastoid cell lines. Using a shuttle vector assay, we measured mutation rates at reporter cassettes containing defined mononucleotide, dinucleotide, and tetranucleotide microsatellite sequences. A mutator phenotype was observed in the hPMS2-deficient cell line. The mutation rate of vectors containing [G/C](10) or [GT/CA](10) alleles was elevated 20-fold to 40-fold in hPMS2-deficient cells, relative to an hPMS2-expressing cell line. We observed a 6-fold and 12-fold relative increase in mutation rate of [TTTC/AAAG](9) and [TTCC/AAGG](9) sequences, respectively, in hPMS2-deficient cells. Mutational specificity analyses suggested that repair by hPMS2 is biased. In the absence of hPMS2, a greater number of microsatellite expansion versus deletion mutations was observed, and expansion rates of the tetranucleotide alleles were similar. In the presence of hPMS2, we observed a 29-fold decrease in the [TTCC/AAGG](9) expansion rate but only a 6-fold decrease for the [TTTC/AAAG](9) allele. Our data indicate that hPMS2 is more protective of tetranucleotide expansions than deletions and that hPMS2 displays a sequence bias, wherein [TTCC/AAGG] sequences are stabilized to a greater extent than [TTTC/AAAG]. Our results allow for greater accuracy during identification of MMR defects by providing a mutational signature characteristic of hPMS2 defect. This study also provides clues to possible mechanisms of repair by hPMS2 in the context of the MMR system.
Collapse
Affiliation(s)
- Sandeep N Shah
- Department of Pathology, Gittlen Cancer Research Foundation and Intercollege Graduate Degree Program in Genetics, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
8
|
Wanner RM, Güthlein C, Springer B, Böttger EC, Ackermann M. Stabilization of the genome of the mismatch repair deficient Mycobacterium tuberculosis by context-dependent codon choice. BMC Genomics 2008; 9:249. [PMID: 18507851 PMCID: PMC2430213 DOI: 10.1186/1471-2164-9-249] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Accepted: 05/28/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The rate at which a stretch of DNA mutates is determined by the cellular systems for DNA replication and repair, and by the nucleotide sequence of the stretch itself. One sequence feature with a particularly strong influence on the mutation rate are nucleotide repeats. Some microbial pathogens use nucleotide repeats in their genome to stochastically vary phenotypic traits and thereby evade host defense. However, such unstable sequences also come at a cost, as mutations are often deleterious. Here, we analyzed how these opposing forces shaped genome stability in the human pathogen Mycobacterium tuberculosis. M. tuberculosis lacks a mismatch repair system, and this renders nucleotide repeats particularly unstable. RESULTS We found that proteins of M. tuberculosis are encoded by using codons in a context-dependent manner that prevents the emergence of nucleotide repeats. This context-dependent codon choice leads to a strong decrease in the estimated frame-shift mutation rate and thus to an increase in genome stability. CONCLUSION These results indicate that a context-specific codon choice can partially compensate for the lack of a mismatch repair system, and helps to maintain genome integrity in this pathogen.
Collapse
Affiliation(s)
- Roger M Wanner
- Institut für Medizinische Mikrobiologie, Universität Zürich, Gloriastrasse 30/32, CH-8006 Zürich, Switzerland.
| | | | | | | | | |
Collapse
|
9
|
Hile SE, Eckert KA. DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences. Nucleic Acids Res 2007; 36:688-96. [PMID: 18079151 PMCID: PMC2241860 DOI: 10.1093/nar/gkm1089] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microsatellites are ubiquitously present in eukaryotic genomes and are implicated as positive factors in evolution. At the nucleotide level, microsatellites undergo slippage events that alter allele length and base changes that interrupt the repetitive tract. We examined DNA polymerase errors within a [T]11 microsatellite using an in vitro assay that preferentially detects mutations other than unit changes. We observed that human DNA polymerase kappa (Pol κ) inserts dGMP and dCMP within the [T]11 mononucleotide repeat, producing an interrupted 12-bp allele. Polymerase β produced such interruptions at a lower frequency. These data demonstrate that DNA polymerases are capable of directly producing base interruptions within microsatellites. At the molecular level, expanded microsatellites have been implicated in DNA replication fork stalling. Using an in vitro primer extension assay, we observed sequence-specific synthesis termination by DNA polymerases within mononucleotides. Quantitatively, intense, polar pausing was observed for both pol κ and polymerase α-primase within a [T]11 allele. A mechanism is proposed in which pausing results from DNA bending within the duplex stem of the nascent DNA. Our data support the concept of a microsatellite life-cycle, and are consistent with the models in which DNA sequence or secondary structures contributes to non-uniform rates of replication fork progression.
Collapse
Affiliation(s)
- Suzanne E Hile
- Department of Pathology, Gittlen Cancer Research Foundation, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | | |
Collapse
|