1
|
Álvarez-González I, Camacho-Cantera S, Gómez-González P, Barrón MJR, Morales-González JA, Madrigal-Santillán EO, Paniagua-Pérez R, Madrigal-Bujaidar E. Genotoxic and oxidative effect of duloxetine on mouse brain and liver tissues. Sci Rep 2021; 11:6897. [PMID: 33767322 PMCID: PMC7994804 DOI: 10.1038/s41598-021-86366-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
We evaluated the duloxetine DNA damaging capacity utilizing the comet assay applied to mouse brain and liver cells, as well as its DNA, lipid, protein, and nitric oxide oxidative potential in the same cells. A kinetic time/dose strategy showed the effect of 2, 20, and 200 mg/kg of the drug administered intraperitoneally once in comparison with a control and a methyl methanesulfonate group. Each parameter was evaluated at 3, 9, 15, and 21 h postadministration in five mice per group, except for the DNA oxidation that was examined only at 9 h postadministration. Results showed a significant DNA damage mainly at 9 h postexposure in both organs. In the brain, with 20 and 200 mg/kg we found 50 and 80% increase over the control group (p ≤ 0.05), in the liver, the increase of 2, 20, and 200 mg/kg of duloxetine was 50, 80, and 135% in comparison with the control level (p ≤ 0.05). DNA, lipid, protein and nitric oxide oxidation increase was also observed in both organs. Our data established the DNA damaging capacity of duloxetine even with a dose from the therapeutic range (2 mg/kg), and suggest that this effect can be related with its oxidative potential.
Collapse
Affiliation(s)
- Isela Álvarez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Scarlett Camacho-Cantera
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Patricia Gómez-González
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - Michael J Rendón Barrón
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México
| | - José A Morales-González
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Eduardo O Madrigal-Santillán
- Laboratorio de Medicina de La Conservación, Instituto Politécnico Nacional, Escuela Superior de Medicina, Plan de San Luis Y Díaz Mirón S/N, Casco de Santo Tomás, Ciudad de México, 11340, México
| | - Rogelio Paniagua-Pérez
- Servicio de Bioquímica, Instituto Nacional de Rehabilitación, Av. México-Xochimilco 289, Ciudad de México, 14389, México
| | - Eduardo Madrigal-Bujaidar
- Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Av. Wilfrido Massieu s/n. Zacatenco, Ciudad de México, 07738, México.
| |
Collapse
|
2
|
Landová B, Šilhán J. Conformational changes of DNA repair glycosylase MutM triggered by DNA binding. FEBS Lett 2020; 594:3032-3044. [PMID: 32598485 DOI: 10.1002/1873-3468.13876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
Bacterial MutM is a DNA repair glycosylase removing DNA damage generated from oxidative stress and, therefore, preventing mutations and genomic instability. MutM belongs to the Fpg/Nei family of prokaryotic enzymes sharing structural and functional similarities with their eukaryotic counterparts, for example, NEIL1-NEIL3. Here, we present two crystal structures of MutM from pathogenic Neisseria meningitidis: a MutM holoenzyme and MutM bound to DNA. The free enzyme exists in an open conformation, while upon binding to DNA, both the enzyme and DNA undergo substantial structural changes and domain rearrangement. Our data show that not only NEI glycosylases but also the MutMs undergo dramatic conformational changes. Moreover, crystallographic data support the previously published observations that MutM enzymes are rather flexible and dynamic molecules.
Collapse
Affiliation(s)
- Barbora Landová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Šilhán
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res 2019; 47:3058-3071. [PMID: 30698731 PMCID: PMC6451117 DOI: 10.1093/nar/gkz045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Proper repair of oxidatively damaged DNA bases is essential to maintain genome stability. 8-Oxoguanine (7,8-dihydro-8-oxoguanine, 8-oxoG) is a dangerous DNA lesion because it can mispair with adenine (A) during replication resulting in guanine to thymine transversion mutations. MUTYH DNA glycosylase is responsible for recognizing and removing the adenine from 8-oxoG:adenine (8-oxoG:A) sites. Biallelic mutations in the MUTYH gene predispose individuals to MUTYH-associated polyposis (MAP), and the most commonly observed mutation in some MAP populations is Y165C. Tyr165 is a ‘wedge’ residue that intercalates into the DNA duplex in the lesion bound state. Here, we utilize single molecule fluorescence microscopy to visualize the real-time search behavior of Escherichia coli and Mus musculus MUTYH WT and wedge variant orthologs on DNA tightropes that contain 8-oxoG:A, 8-oxoG:cytosine, or apurinic product analog sites. We observe that MUTYH WT is able to efficiently find 8-oxoG:A damage and form highly stable bound complexes. In contrast, MUTYH Y150C shows decreased binding lifetimes on undamaged DNA and fails to form a stable lesion recognition complex at damage sites. These findings suggest that MUTYH does not rely upon the wedge residue for damage site recognition, but this residue stabilizes the lesion recognition complex.
Collapse
Affiliation(s)
- Shane R Nelson
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Thomas S Hilzinger
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Andrea J Lee
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Kladova OA, Grin IR, Fedorova OS, Kuznetsov NA, Zharkov DO. Conformational Dynamics of Damage Processing by Human DNA Glycosylase NEIL1. J Mol Biol 2019; 431:1098-1112. [DOI: 10.1016/j.jmb.2019.01.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
5
|
Kuznetsova AA, Iakovlev DA, Misovets IV, Ishchenko AA, Saparbaev MK, Kuznetsov NA, Fedorova OS. Pre-steady-state kinetic analysis of damage recognition by human single-strand selective monofunctional uracil-DNA glycosylase SMUG1. MOLECULAR BIOSYSTEMS 2018; 13:2638-2649. [PMID: 29051947 DOI: 10.1039/c7mb00457e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In all organisms, DNA glycosylases initiate base excision repair pathways resulting in removal of aberrant bases from DNA. Human SMUG1 belongs to the superfamily of uracil-DNA glycosylases catalyzing the hydrolysis of the N-glycosidic bond of uridine and uridine lesions bearing oxidized groups at C5: 5-hydroxymethyluridine (5hmU), 5-formyluridine (5fU), and 5-hydroxyuridine (5hoU). An apurinic/apyrimidinic (AP) site formed as the product of an N-glycosylase reaction is tightly bound to hSMUG1, thus inhibiting the downstream action of AP-endonuclease APE1. The steady-state kinetic parameters (kcat and KM; obtained from the literature) correspond to the enzyme turnover process limited by the release of hSMUG1 from the complex with the AP-site. In the present study, our objective was to carry out a stopped-flow fluorescence analysis of the interaction of hSMUG1 with a DNA substrate containing a dU:dG base pair to follow the pre-steady-state kinetics of conformational changes in both molecules. A comparison of kinetic data obtained by means of Trp and 2-aminopurine fluorescence and Förster resonance energy transfer (FRET) detection allowed us to elucidate the stages of specific and nonspecific DNA binding, to propose the mechanism of damaged base recognition by hSMUG1, and to determine the true rate of the catalytic step. Our results shed light on the kinetic mechanism underlying the initiation of base excision repair by hSMUG1 using the "wedge" strategy for DNA lesion search.
Collapse
Affiliation(s)
- Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kladova OA, Krasnoperov LN, Kuznetsov NA, Fedorova OS. Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms. Genes (Basel) 2018; 9:genes9040190. [PMID: 29601551 PMCID: PMC5924532 DOI: 10.3390/genes9040190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 02/01/2023] Open
Abstract
Endonuclease III (Endo III or Nth) is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO), a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5-37 °C). Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van't Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU) recognition and desolvation-accompanied entropy-driven adjustment of the enzyme-substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme-DNA complex formation.
Collapse
Affiliation(s)
- Olga A Kladova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia.
| | - Lev N Krasnoperov
- New Jersey Institute of Technology, Department of Chemistry and Environment Sciences, University Heights, Newark, NJ 07102, USA.
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), 630090 Novosibirsk, Russia.
| |
Collapse
|
7
|
Lee AJ, Wallace SS. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases? Free Radic Biol Med 2017; 107:170-178. [PMID: 27865982 PMCID: PMC5433924 DOI: 10.1016/j.freeradbiomed.2016.11.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
8
|
Boiteux S, Coste F, Castaing B. Repair of 8-oxo-7,8-dihydroguanine in prokaryotic and eukaryotic cells: Properties and biological roles of the Fpg and OGG1 DNA N-glycosylases. Free Radic Biol Med 2017; 107:179-201. [PMID: 27903453 DOI: 10.1016/j.freeradbiomed.2016.11.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 01/23/2023]
Abstract
Oxidatively damaged DNA results from the attack of sugar and base moieties by reactive oxygen species (ROS), which are formed as byproducts of normal cell metabolism and during exposure to endogenous or exogenous chemical or physical agents. Guanine, having the lowest redox potential, is the DNA base the most susceptible to oxidation, yielding products such as 8-oxo-7,8-dihydroguanine (8-oxoG) and 2-6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG). In DNA, 8-oxoG was shown to be mutagenic yielding GC to TA transversions upon incorporation of dAMP opposite this lesion by replicative DNA polymerases. In prokaryotic and eukaryotic cells, 8-oxoG is primarily repaired by the base excision repair pathway (BER) initiated by a DNA N-glycosylase, Fpg and OGG1, respectively. In Escherichia coli, Fpg cooperates with MutY and MutT to prevent 8-oxoG-induced mutations, the "GO-repair system". In Saccharomyces cerevisiae, OGG1 cooperates with nucleotide excision repair (NER), mismatch repair (MMR), post-replication repair (PRR) and DNA polymerase η to prevent mutagenesis. Human and mouse cells mobilize all these pathways using OGG1, MUTYH (MutY-homolog also known as MYH), MTH1 (MutT-homolog also known as NUDT1), NER, MMR, NEILs and DNA polymerases η and λ, to prevent 8-oxoG-induced mutations. In fact, mice deficient in both OGG1 and MUTYH develop cancer in different organs at adult age, which points to the critical impact of 8-oxoG repair on genetic stability in mammals. In this review, we will focus on Fpg and OGG1 proteins, their biochemical and structural properties as well as their biological roles. Other DNA N-glycosylases able to release 8-oxoG from damaged DNA in various organisms will be discussed. Finally, we will report on the role of OGG1 in human disease and the possible use of 8-oxoG DNA N-glycosylases as therapeutic targets.
Collapse
Affiliation(s)
- Serge Boiteux
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| | - Franck Coste
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France
| | - Bertrand Castaing
- Centre de Biophysique Moléculaire, CNRS, UPR4301, rue Charles Sadron, 45072 Orléans, France.
| |
Collapse
|
9
|
Mutational and Kinetic Analysis of Lesion Recognition by Escherichia coli Endonuclease VIII. Genes (Basel) 2017; 8:genes8050140. [PMID: 28505099 PMCID: PMC5448014 DOI: 10.3390/genes8050140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
Escherichia coli endonuclease VIII (Endo VIII) is a DNA glycosylase with substrate specificity for a wide range of oxidatively damaged pyrimidine bases. Endo VIII catalyzes hydrolysis of the N-glycosidic bond and β, δ-elimination of 3′- and 5′-phosphate groups of an apurinic/apyrimidinic site. Single mutants of Endo VIII L70S, L70W, Y71W, F121W, F230W, and P253W were analyzed here with the aim to elucidate the kinetic mechanism of protein conformational adjustment during damaged-nucleotide recognition and catalytic-complex formation. F121W substitution leads to a slight reduction of DNA binding and catalytic activity. F230W substitution slows the rate of the δ-elimination reaction indicating that interaction of Phe230 with a 5′-phosphate group proceeds in the latest catalytic step. P253W Endo VIII has the same activity as the wild type (WT) enzyme. Y71W substitution slightly reduces the catalytic activity due to the effect on the later steps of catalytic-complex formation. Both L70S and L70W substitutions significantly decrease the catalytic activity, indicating that Leu70 plays an important role in the course of enzyme-DNA catalytic complex formation. Our data suggest that Leu70 forms contacts with DNA earlier than Tyr71 does. Therefore, most likely, Leu70 plays the role of a DNA lesion “sensor”, which is used by Endo VIII for recognition of a DNA damage site.
Collapse
|
10
|
Kuznetsov NA, Fedorova OS. Thermodynamic analysis of fast stages of specific lesion recognition by DNA repair enzymes. BIOCHEMISTRY (MOSCOW) 2016; 81:1136-1152. [DOI: 10.1134/s0006297916100114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Lee AJ, Wallace SS. Visualizing the Search for Radiation-damaged DNA Bases in Real Time. Radiat Phys Chem Oxf Engl 1993 2016; 128:126-133. [PMID: 27818579 DOI: 10.1016/j.radphyschem.2016.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Base Excision Repair (BER) pathway removes the vast majority of damages produced by ionizing radiation, including the plethora of radiation-damaged purines and pyrimidines. The first enzymes in the BER pathway are DNA glycosylases, which are responsible for finding and removing the damaged base. Although much is known about the biochemistry of DNA glycosylases, how these enzymes locate their specific damage substrates among an excess of undamaged bases has long remained a mystery. Here we describe the use of single molecule fluorescence to observe the bacterial DNA glycosylases, Nth, Fpg and Nei, scanning along undamaged and damaged DNA. We show that all three enzymes randomly diffuse on the DNA molecule and employ a wedge residue to search for and locate damage. The search behavior of the Escherichia coli DNA glycosylases likely provides a paradigm for their homologous mammalian counterparts.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, Vermont, 05405, USA
| |
Collapse
|
12
|
Kuznetsov NA, Kiryutin AS, Kuznetsova AA, Panov MS, Barsukova MO, Yurkovskaya AV, Fedorova OS. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase. J Biomol Struct Dyn 2016; 35:950-967. [PMID: 27025273 DOI: 10.1080/07391102.2016.1171800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, Tm, and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (Tm(F/T) < Tm(εA/T) < Tm(Hx/T) < Tm(A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.
Collapse
Affiliation(s)
- N A Kuznetsov
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A S Kiryutin
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A A Kuznetsova
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| | - M S Panov
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - M O Barsukova
- c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - A V Yurkovskaya
- b International Tomography Center SB RAS, Institutskaya 3a , Novosibirsk 630090 , Russia.,c Department of Natural Sciences , Novosibirsk State University , Pirogova St. 2, Novosibirsk 630090 , Russia
| | - O S Fedorova
- a Institute of Chemical Biology and Fundamental Medicine , Lavrentyev Ave. 8, Novosibirsk 630090 , Russia
| |
Collapse
|
13
|
Miroshnikova AD, Kuznetsova AA, Vorobjev YN, Kuznetsov NA, Fedorova OS. Effects of mono- and divalent metal ions on DNA binding and catalysis of human apurinic/apyrimidinic endonuclease 1. MOLECULAR BIOSYSTEMS 2016; 12:1527-39. [PMID: 27063150 DOI: 10.1039/c6mb00128a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we used stopped-flow fluorescence techniques to conduct a comparative kinetic analysis of the conformational transitions in human apurinic/apyrimidinic endonuclease 1 (APE1) and in DNA containing an abasic site in the course of their interaction. Effects of monovalent (K(+)) and divalent (Mg(2+), Mn(2+), Ca(2+), Zn(2+), Cu(2+), and Ni(2+)) metal ions on DNA binding and catalytic stages were studied. It was shown that the first step of substrate binding (corresponding to formation of a primary enzyme-substrate complex) does not depend on the concentration (0.05-5.0 mM) or the nature of divalent metal ions. In contrast, the initial DNA binding efficiency significantly decreased at a high concentration (5-250 mM) of monovalent K(+) ions, indicating the involvement of electrostatic interactions in this stage. It was also shown that Cu(2+) ions abrogated the DNA binding ability of APE1, possibly, due to a strong interaction with DNA bases and the sugar-phosphate backbone. In the case of Ca(2+) ions, the catalytic activity of APE1 was lost completely with retention of binding potential. Thus, the enzymatic activity of APE1 is increased in the order Zn(2+) < Ni(2+) < Mn(2+) < Mg(2+). Circular dichroism spectra and calculation of the contact area between APE1 and DNA reveal that Mg(2+) ions stabilize the protein structure and the enzyme-substrate complex.
Collapse
Affiliation(s)
- Anastasia D Miroshnikova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM), Siberian Branch of Russian Academy of Sciences, 8 Lavrentyev Ave., Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
14
|
Twist-open mechanism of DNA damage recognition by the Rad4/XPC nucleotide excision repair complex. Proc Natl Acad Sci U S A 2016; 113:E2296-305. [PMID: 27035942 DOI: 10.1073/pnas.1514666113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
DNA damage repair starts with the recognition of damaged sites from predominantly normal DNA. In eukaryotes, diverse DNA lesions from environmental sources are recognized by the xeroderma pigmentosum C (XPC) nucleotide excision repair complex. Studies of Rad4 (radiation-sensitive 4; yeast XPC ortholog) showed that Rad4 "opens" up damaged DNA by inserting a β-hairpin into the duplex and flipping out two damage-containing nucleotide pairs. However, this DNA lesion "opening" is slow (˜5-10 ms) compared with typical submillisecond residence times per base pair site reported for various DNA-binding proteins during 1D diffusion on DNA. To address the mystery as to how Rad4 pauses to recognize lesions during diffusional search, we examine conformational dynamics along the lesion recognition trajectory using temperature-jump spectroscopy. Besides identifying the ˜10-ms step as the rate-limiting bottleneck towards opening specific DNA site, we uncover an earlier ˜100- to 500-μs step that we assign to nonspecific deformation (unwinding/"twisting") of DNA by Rad4. The β-hairpin is not required to unwind or to overcome the bottleneck but is essential for full nucleotide-flipping. We propose that Rad4 recognizes lesions in a step-wise "twist-open" mechanism, in which preliminary twisting represents Rad4 interconverting between search and interrogation modes. Through such conformational switches compatible with rapid diffusion on DNA, Rad4 may stall preferentially at a lesion site, offering time to open DNA. This study represents the first direct observation, to our knowledge, of dynamical DNA distortions during search/interrogation beyond base pair breathing. Submillisecond interrogation with preferential stalling at cognate sites may be common to various DNA-binding proteins.
Collapse
|
15
|
Kuznetsov N, Kladova O, Kuznetsova A, Fedorova O. 110 The mechanism of the specific protein-DNA interactions during DNA lesion search and damaged base recognition by Endonuclease VIII. J Biomol Struct Dyn 2015. [DOI: 10.1080/07391102.2015.1032742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Kuznetsov NA, Kladova OA, Kuznetsova AA, Ishchenko AA, Saparbaev MK, Zharkov DO, Fedorova OS. Conformational Dynamics of DNA Repair by Escherichia coli Endonuclease III. J Biol Chem 2015; 290:14338-49. [PMID: 25869130 DOI: 10.1074/jbc.m114.621128] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli endonuclease III (Endo III or Nth) is a DNA glycosylase with a broad substrate specificity for oxidized or reduced pyrimidine bases. Endo III possesses two types of activities: N-glycosylase (hydrolysis of the N-glycosidic bond) and AP lyase (elimination of the 3'-phosphate of the AP-site). We report a pre-steady-state kinetic analysis of structural rearrangements of the DNA substrates and uncleavable ligands during their interaction with Endo III. Oligonucleotide duplexes containing 5,6-dihydrouracil, a natural abasic site, its tetrahydrofuran analog, and undamaged duplexes carried fluorescent DNA base analogs 2-aminopurine and 1,3-diaza-2-oxophenoxazine as environment-sensitive reporter groups. The results suggest that Endo III induces several fast sequential conformational changes in DNA during binding, lesion recognition, and adjustment to a catalytically competent conformation. A comparison of two fluorophores allowed us to distinguish between the events occurring in the damaged and undamaged DNA strand. Combining our data with the available structures of Endo III, we conclude that this glycosylase uses a multistep mechanism of damage recognition, which likely involves Gln(41) and Leu(81) as DNA lesion sensors.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga A Kladova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Alexander A Ishchenko
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Murat K Saparbaev
- the Groupe "Réparation de l'ADN," Université Paris-Sud XI, UMR8200 CNRS, Institute Gustave Roussy, Villejuif Cedex F-94805, France
| | - Dmitry O Zharkov
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentyev Ave., Novosibirsk 630090, Russia, the Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia, and
| |
Collapse
|
17
|
Kuznetsov NA, Bergonzo C, Campbell AJ, Li H, Mechetin GV, de los Santos C, Grollman AP, Fedorova OS, Zharkov DO, Simmerling C. Active destabilization of base pairs by a DNA glycosylase wedge initiates damage recognition. Nucleic Acids Res 2014; 43:272-81. [PMID: 25520195 PMCID: PMC4288190 DOI: 10.1093/nar/gku1300] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Formamidopyrimidine-DNA glycosylase (Fpg) excises 8-oxoguanine (oxoG) from DNA but ignores normal guanine. We combined molecular dynamics simulation and stopped-flow kinetics with fluorescence detection to track the events in the recognition of oxoG by Fpg and its mutants with a key phenylalanine residue, which intercalates next to the damaged base, changed to either alanine (F110A) or fluorescent reporter tryptophan (F110W). Guanine was sampled by Fpg, as evident from the F110W stopped-flow traces, but less extensively than oxoG. The wedgeless F110A enzyme could bend DNA but failed to proceed further in oxoG recognition. Modeling of the base eversion with energy decomposition suggested that the wedge destabilizes the intrahelical base primarily through buckling both surrounding base pairs. Replacement of oxoG with abasic (AP) site rescued the activity, and calculations suggested that wedge insertion is not required for AP site destabilization and eversion. Our results suggest that Fpg, and possibly other DNA glycosylases, convert part of the binding energy into active destabilization of their substrates, using the energy differences between normal and damaged bases for fast substrate discrimination.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Christina Bergonzo
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Arthur J Campbell
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Haoquan Li
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Grigory V Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Carlos de los Santos
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Arthur P Grollman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Olga S Fedorova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Dmitry O Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., Novosibirsk 630090, Russia Department of Natural Sciences, Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
18
|
Kuznetsov NA, Faleev NG, Kuznetsova AA, Morozova EA, Revtovich SV, Anufrieva NV, Nikulin AD, Fedorova OS, Demidkina TV. Pre-steady-state kinetic and structural analysis of interaction of methionine γ-lyase from Citrobacter freundii with inhibitors. J Biol Chem 2014; 290:671-81. [PMID: 25398880 DOI: 10.1074/jbc.m114.586511] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Methionine γ-lyase (MGL) catalyzes the γ-elimination of l-methionine and its derivatives as well as the β-elimination of l-cysteine and its analogs. These reactions yield α-keto acids and thiols. The mechanism of chemical conversion of amino acids includes numerous reaction intermediates. The detailed analysis of MGL interaction with glycine, l-alanine, l-norvaline, and l-cycloserine was performed by pre-steady-state stopped-flow kinetics. The structure of side chains of the amino acids is important both for their binding with enzyme and for the stability of the external aldimine and ketimine intermediates. X-ray structure of the MGL·l-cycloserine complex has been solved at 1.6 Å resolution. The structure models the ketimine intermediate of physiological reaction. The results elucidate the mechanisms of the intermediate interconversion at the stages of external aldimine and ketimine formation.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | | | - Alexandra A Kuznetsova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Natalya V Anufrieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| | - Alexei D Nikulin
- the Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Olga S Fedorova
- From the Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, the Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090,
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, and
| |
Collapse
|
19
|
Kuznetsova AA, Kuznetsov NA, Ishchenko AA, Saparbaev MK, Fedorova OS. Pre-steady-state fluorescence analysis of damaged DNA transfer from human DNA glycosylases to AP endonuclease APE1. Biochim Biophys Acta Gen Subj 2014; 1840:3042-51. [PMID: 25086253 DOI: 10.1016/j.bbagen.2014.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND DNA glycosylases remove the modified, damaged or mismatched bases from the DNA by hydrolyzing the N-glycosidic bonds. Some enzymes can further catalyze the incision of a resulting abasic (apurinic/apyrimidinic, AP) site through β- or β,δ-elimination mechanisms. In most cases, the incision reaction of the AP-site is catalyzed by special enzymes called AP-endonucleases. METHODS Here, we report the kinetic analysis of the mechanisms of modified DNA transfer from some DNA glycosylases to the AP endonuclease, APE1. The modified DNA contained the tetrahydrofurane residue (F), the analogue of the AP-site. DNA glycosylases AAG, OGG1, NEIL1, MBD4(cat) and UNG from different structural superfamilies were used. RESULTS We found that all DNA glycosylases may utilise direct protein-protein interactions in the transient ternary complex for the transfer of the AP-containing DNA strand to APE1. CONCLUSIONS We hypothesize a fast "flip-flop" exchange mechanism of damaged and undamaged DNA strands within this complex for monofunctional DNA glycosylases like MBD4(cat), AAG and UNG. Bifunctional DNA glycosylase NEIL1 creates tightly specific complex with DNA containing F-site thereby efficiently competing with APE1. Whereas APE1 fast displaces other bifunctional DNA glycosylase OGG1 on F-site thereby induces its shifts to undamaged DNA regions. GENERAL SIGNIFICANCE Kinetic analysis of the transfer of DNA between human DNA glycosylases and APE1 allows us to elucidate the critical step in the base excision repair pathway.
Collapse
Affiliation(s)
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| | - Alexander A Ishchenko
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Murat K Saparbaev
- Groupe «Réparation de l'ADN», Université Paris-Sud XI, UMR8200 CNRS, Institut Gustave Roussy, Villejuif Cedex F-94805, France
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia.
| |
Collapse
|
20
|
New environment-sensitive multichannel DNA fluorescent label for investigation of the protein-DNA interactions. PLoS One 2014; 9:e100007. [PMID: 24925085 PMCID: PMC4055743 DOI: 10.1371/journal.pone.0100007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/20/2014] [Indexed: 12/24/2022] Open
Abstract
Here, we report the study of a new multichannel DNA fluorescent base analogue 3-hydroxychromone (3HC) to evaluate its suitability as a fluorescent reporter probe of structural transitions during protein-DNA interactions and its comparison with the current commercially available 2-aminopurine (aPu), pyrrolocytosine (Cpy) and 1,3-diaza-2-oxophenoxazine (tCO). For this purpose, fluorescent base analogues were incorporated into DNA helix on the opposite or on the 5'-side of the damaged nucleoside 5,6-dihydrouridine (DHU), which is specifically recognized and removed by Endonuclease VIII. These fluorophores demonstrated different sensitivities to the DNA helix conformational changes. The highest sensitivity and the most detailed information about the conformational changes of DNA induced by protein binding and processing were obtained using the 3HC probe. The application of this new artificial fluorescent DNA base is a very useful tool for the studies of complex mechanisms of protein-DNA interactions. Using 3HC biosensor, the kinetic mechanism of Endonuclease VIII action was specified.
Collapse
|
21
|
Kuznetsov NA, Kuznetsova AA, Vorobjev YN, Krasnoperov LN, Fedorova OS. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. PLoS One 2014; 9:e98495. [PMID: 24911585 PMCID: PMC4049573 DOI: 10.1371/journal.pone.0098495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 05/03/2014] [Indexed: 11/19/2022] Open
Abstract
Human 8-oxoguanine DNA glycosylase (hOGG1) is a key enzyme responsible for initiating the base excision repair of 7,8-dihydro-8-oxoguanosine (oxoG). In this study a thermodynamic analysis of the interaction of hOGG1 with specific and non-specific DNA-substrates is performed based on stopped-flow kinetic data. The standard Gibbs energies, enthalpies and entropies of specific stages of the repair process were determined via kinetic measurements over a temperature range using the van’t Hoff approach. The three steps which are accompanied with changes in the DNA conformations were detected via 2-aminopurine fluorescence in the process of binding and recognition of damaged oxoG base by hOGG1. The thermodynamic analysis has demonstrated that the initial step of the DNA substrates binding is mainly governed by energy due to favorable interactions in the process of formation of the recognition contacts, which results in negative enthalpy change, as well as due to partial desolvation of the surface between the DNA and enzyme, which results in positive entropy change. Discrimination of non-specific G base versus specific oxoG base is occurring in the second step of the oxoG-substrate binding. This step requires energy consumption which is compensated by the positive entropy contribution. The third binding step is the final adjustment of the enzyme/substrate complex to achieve the catalytically competent state which is characterized by large endothermicity compensated by a significant increase of entropy originated from the dehydration of the DNA grooves.
Collapse
Affiliation(s)
- Nikita A. Kuznetsov
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia and Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alexandra A. Kuznetsova
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia and Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Yuri N. Vorobjev
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia and Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Lev N. Krasnoperov
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, United States of America
| | - Olga S. Fedorova
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia and Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
22
|
Two glycosylase families diffusively scan DNA using a wedge residue to probe for and identify oxidatively damaged bases. Proc Natl Acad Sci U S A 2014; 111:E2091-9. [PMID: 24799677 DOI: 10.1073/pnas.1400386111] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
DNA glycosylases are enzymes that perform the initial steps of base excision repair, the principal repair mechanism that identifies and removes endogenous damages that occur in an organism's DNA. We characterized the motion of single molecules of three bacterial glycosylases that recognize oxidized bases, Fpg, Nei, and Nth, as they scan for damages on tightropes of λ DNA. We find that all three enzymes use a key "wedge residue" to scan for damage because mutation of this residue to an alanine results in faster diffusion. Moreover, all three enzymes bind longer and diffuse more slowly on DNA that contains the damages they recognize and remove. Using a sliding window approach to measure diffusion constants and a simple chemomechanical simulation, we demonstrate that these enzymes diffuse along DNA, pausing momentarily to interrogate random bases, and when a damaged base is recognized, they stop to evert and excise it.
Collapse
|
23
|
Wallace SS. DNA glycosylases search for and remove oxidized DNA bases. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:691-704. [PMID: 24123395 PMCID: PMC3997179 DOI: 10.1002/em.21820] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/04/2013] [Accepted: 09/05/2013] [Indexed: 05/19/2023]
Abstract
This review article presents, an overview of the DNA glycosylases that recognize oxidized DNA bases using the Fpg/Nei family of DNA glycosylases as models for how structure can inform function. For example, even though human NEIL1 and the plant and fungal orthologs lack the zinc finger shown to be required for binding, DNA crystal structures revealed a "zincless finger" with the same properties. Moreover, the "lesion recognition loop" is not involved in lesion recognition, rather, it stabilizes 8-oxoG in the active site pocket. Unlike the other Fpg/Nei family members, Neil3 lacks two of the three void-filling residues that stabilize the DNA duplex and interact with the opposite strand to the damage which may account for its preference for lesions in single-stranded DNA. Also single-molecule approaches show that DNA glycosylases search for their substrates in a sea of undamaged DNA by using a wedge residue that is inserted into the DNA helix to probe for the presence of damage.
Collapse
Affiliation(s)
- Susan S. Wallace
- Department of Microbiology and Molecular Genetics The Markey Center for Molecular Genetics The University of Vermont Stafford Hall, 95 Carrigan Drive Burlington, VT 05405-0068, USA Tel: (802) 656-2164; Fax: (802) 656-8749
| |
Collapse
|
24
|
Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Biochim Biophys Acta Gen Subj 2013; 1840:387-95. [PMID: 24096108 DOI: 10.1016/j.bbagen.2013.09.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/23/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Extensive structural studies of human DNA glycosylase hOGG1 have revealed essential conformational changes of the enzyme. However, at present there is little information about the time scale of the rearrangements of the protein structure as well as the dynamic behavior of individual amino acids. METHODS Using pre-steady-state kinetic analysis with Trp and 2-aminopurine fluorescence detection the conformational dynamics of hOGG1 wild-type (WT) and mutants Y203W, Y203A, H270W, F45W, F319W and K249Q as well as DNA-substrates was examined. RESULTS The roles of catalytically important amino acids F45, Y203, K249, H270, and F319 in the hOGG1 enzymatic pathway and their involvement in the step-by-step mechanism of oxidative DNA lesion recognition and catalysis were elucidated. CONCLUSIONS The results show that Tyr-203 participates in the initial steps of the lesion site recognition. The interaction of the His-270 residue with the oxoG base plays a key role in the insertion of the damaged base into the active site. Lys-249 participates not only in the catalytic stages but also in the processes of local duplex distortion and flipping out of the oxoG residue. Non-damaged DNA does not form a stable complex with hOGG1, although a complex with a flipped out guanine base can be formed transiently. GENERAL SIGNIFICANCE The kinetic data obtained in this study significantly improves our understanding of the molecular mechanism of lesion recognition by hOGG1.
Collapse
|
25
|
Sung RJ, Zhang M, Qi Y, Verdine GL. Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. J Biol Chem 2013; 288:10012-10023. [PMID: 23404556 DOI: 10.1074/jbc.m112.415612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MutM is a bacterial DNA glycosylase that serves as the first line of defense against the highly mutagenic 8-oxoguanine (oxoG) lesion, catalyzing glycosidic bond cleavage of oxoG to initiate base excision DNA repair. Previous work has shown that MutM actively interrogates DNA for the presence of an intrahelical oxoG lesion. This interrogation process involves significant buckling and bending of the DNA to promote extrusion of oxoG from the duplex. Structural snapshots have revealed several different highly conserved residues that are prominently inserted into the duplex in the vicinity of the target oxoG before and after base extrusion has occurred. However, the roles of these helix-invading residues during the lesion recognition and base extrusion process remain unclear. In this study, we set out to probe the function of residues Phe(114) and Met(77) in oxoG recognition and repair. Here we report a detailed biochemical and structural characterization of MutM variants containing either a F114A or M77A mutation, both of which showed significant decreases in the efficiency of oxoG repair. These data reveal that Met(77) plays an important role in stabilizing the lesion-extruded conformation of the DNA. Phe(114), on the other hand, appears to destabilize the intrahelical state of the oxoG lesion, primarily by buckling the target base pair. We report the observation of a completely unexpected interaction state, in which the target base pair is ruptured but remains fully intrahelical; this structure vividly illustrates the disruptive influence of MutM on the target base pair.
Collapse
Affiliation(s)
- Rou-Jia Sung
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Michael Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Yan Qi
- Graduate Program in Biophysics, Harvard Medical School, Boston, Massachusetts 02115
| | - Gregory L Verdine
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138; Chemical Biology Initiative and Program in Cancer Chemical Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115.
| |
Collapse
|
26
|
Kuznetsov NA, Vorobjev YN, Krasnoperov LN, Fedorova OS. Thermodynamics of the multi-stage DNA lesion recognition and repair by formamidopyrimidine-DNA glycosylase using pyrrolocytosine fluorescence--stopped-flow pre-steady-state kinetics. Nucleic Acids Res 2012; 40:7384-92. [PMID: 22584623 PMCID: PMC3424566 DOI: 10.1093/nar/gks423] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Formamidopyrimidine-DNA glycosylase, Fpg protein from Escherichia coli, initiates base excision repair in DNA by removing a wide variety of oxidized lesions. In this study, we perform thermodynamic analysis of the multi-stage interaction of Fpg with specific DNA-substrates containing 7,8-dihydro-8-oxoguanosine (oxoG), or tetrahydrofuran (THF, an uncleavable abasic site analog) and non-specific (G) DNA-ligand based on stopped-flow kinetic data. Pyrrolocytosine, highly fluorescent analog of the natural nucleobase cytosine, is used to record multi-stage DNA lesion recognition and repair kinetics over a temperature range (10–30°C). The kinetic data were used to obtain the standard Gibbs energy, enthalpy and entropy of the specific stages using van’t Hoff approach. The data suggest that not only enthalpy-driven exothermic oxoG recognition, but also the desolvation-accompanied entropy-driven enzyme-substrate complex adjustment into the catalytically active state play equally important roles in the overall process.
Collapse
Affiliation(s)
- Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | |
Collapse
|
27
|
The Fpg/Nei family of DNA glycosylases: substrates, structures, and search for damage. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:71-91. [PMID: 22749143 DOI: 10.1016/b978-0-12-387665-2.00004-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the initial stages of the base excision DNA repair pathway, DNA glycosylases are responsible for locating and removing the majority of endogenous oxidative base lesions. The bifunctional formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of the Fpg/Nei family, one of the two families of glycosylases that recognize oxidized DNA bases, the other being the HhH/GPD (or Nth) superfamily. Structural and biochemical developments over the past decades have led to novel insights into the mechanism of damage recognition by the Fpg/Nei family of enzymes. Despite the overall structural similarity among members of this family, these enzymes exhibit distinct features that make them unique. This review summarizes the current structural knowledge of the Fpg/Nei family members, emphasizes their substrate specificities, and describes how these enzymes search for lesions.
Collapse
|
28
|
Abstract
Fluorescent sensors that make use of DNA structures have become widely useful in monitoring enzymatic activities. Early studies focused primarily on enzymes that naturally use DNA or RNA as the substrate. However, recent advances in molecular design have enabled the development of nucleic acid sensors for a wider range of functions, including enzymes that do not normally bind DNA or RNA. Nucleic acid sensors present some potential advantages over classical small-molecule sensors, including water solubility and ease of synthesis. An overview of the multiple strategies under recent development is presented in this critical review, and expected future developments in microarrays, single molecule analysis, and in vivo sensing are discussed (160 references).
Collapse
Affiliation(s)
- Nan Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Razo-Aguilera G, Baez-Reyes R, Alvarez-González I, Paniagua-Pérez R, Madrigal-Bujaidar E. Inhibitory effect of grapefruit juice on the genotoxicity induced by hydrogen peroxide in human lymphocytes. Food Chem Toxicol 2011; 49:2947-53. [PMID: 21777646 DOI: 10.1016/j.fct.2011.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/04/2011] [Accepted: 07/06/2011] [Indexed: 10/18/2022]
Abstract
By means of the comet assay we demonstrated a strong effect by hydrogen peroxide (HP) and no damage by grapefruit juice (GJ) in human lymphocytes. Cells exposed to HP and treated with three concentrations of GJ (10-90 min) showed an increase of DNA damage by HP over the control level, and a decrease of such damage by GJ. With the comet assay plus formamidopyrimidine-DNA-glycosylase we found the strongest increase of DNA damage by HP over the control level, and the strongest reduction of such damage by GJ. By applying the comet/FISH method we determined 98% of the p53 gene signals in the comet head of control cells along the experiment (10-90 min), in contrast with about 90% signals in the comet tail of cells exposed to HP. Cells treated with both agents showed a significant, concentration/time dependent return of p53 signals to the head, suggesting enhancement of the gene repair. Finally, with the annexin V assay we found an increase in apoptosis and necrosis by HP, and no effect by GJ; when GJ was added to HP treated cells no modification was observed in regard to apoptosis, although a decrease of necrosis was observed.
Collapse
Affiliation(s)
- G Razo-Aguilera
- Instituto Nacional de Perinatología, SSA, Montes Urales 800, Lomas Virreyes, 11000 México DF, Mexico
| | | | | | | | | |
Collapse
|
30
|
Dunn AR, Kad NM, Nelson SR, Warshaw DM, Wallace SS. Single Qdot-labeled glycosylase molecules use a wedge amino acid to probe for lesions while scanning along DNA. Nucleic Acids Res 2011; 39:7487-98. [PMID: 21666255 PMCID: PMC3177204 DOI: 10.1093/nar/gkr459] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Within the base excision repair (BER) pathway, the DNA N-glycosylases are responsible for locating and removing the majority of oxidative base damages. Endonuclease III (Nth), formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) are members of two glycosylase families: the helix–hairpin–helix (HhH) superfamily and the Fpg/Nei family. The search mechanisms employed by these two families of glycosylases were examined using a single molecule assay to image quantum dot (Qdot)-labeled glycosylases interacting with YOYO-1 stained λ-DNA molecules suspended between 5 µm silica beads. The HhH and Fpg/Nei families were found to have a similar diffusive search mechanism described as a continuum of motion, in keeping with rotational diffusion along the DNA molecule ranging from slow, sub-diffusive to faster, unrestricted diffusion. The search mechanism for an Fpg variant, F111A, lacking a phenylalanine wedge residue no longer displayed slow, sub-diffusive motion compared to wild type, suggesting that Fpg base interrogation may be accomplished by Phe111 insertion.
Collapse
Affiliation(s)
- Andrew R Dunn
- The Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|
31
|
Friedman JI, Stivers JT. Detection of damaged DNA bases by DNA glycosylase enzymes. Biochemistry 2010; 49:4957-67. [PMID: 20469926 DOI: 10.1021/bi100593a] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.
Collapse
Affiliation(s)
- Joshua I Friedman
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, WBSB 314, 725 North Wolfe Street, Baltimore, Maryland 21205, USA
| | | |
Collapse
|