1
|
Khosla D, Misra S, Chu PL, Guan P, Nada R, Gupta R, Kaewnarin K, Ko TK, Heng HL, Srinivasalu VK, Kapoor R, Singh D, Klanrit P, Sampattavanich S, Tan J, Kongpetch S, Jusakul A, Teh BT, Chan JY, Hong JH. Cholangiocarcinoma: Recent Advances in Molecular Pathobiology and Therapeutic Approaches. Cancers (Basel) 2024; 16:801. [PMID: 38398194 PMCID: PMC10887007 DOI: 10.3390/cancers16040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Cholangiocarcinomas (CCA) pose a complex challenge in oncology due to diverse etiologies, necessitating tailored therapeutic approaches. This review discusses the risk factors, molecular pathology, and current therapeutic options for CCA and explores the emerging strategies encompassing targeted therapies, immunotherapy, novel compounds from natural sources, and modulation of gut microbiota. CCA are driven by an intricate landscape of genetic mutations, epigenetic dysregulation, and post-transcriptional modification, which differs based on geography (e.g., for liver fluke versus non-liver fluke-driven CCA) and exposure to environmental carcinogens (e.g., exposure to aristolochic acid). Liquid biopsy, including circulating cell-free DNA, is a potential diagnostic tool for CCA, which warrants further investigations. Currently, surgical resection is the primary curative treatment for CCA despite the technical challenges. Adjuvant chemotherapy, including cisplatin and gemcitabine, is standard for advanced, unresectable, or recurrent CCA. Second-line therapy options, such as FOLFOX (oxaliplatin and 5-FU), and the significance of radiation therapy in adjuvant, neoadjuvant, and palliative settings are also discussed. This review underscores the need for personalized therapies and demonstrates the shift towards precision medicine in CCA treatment. The development of targeted therapies, including FDA-approved drugs inhibiting FGFR2 gene fusions and IDH1 mutations, is of major research focus. Investigations into immune checkpoint inhibitors have also revealed potential clinical benefits, although improvements in survival remain elusive, especially across patient demographics. Novel compounds from natural sources exhibit anti-CCA activity, while microbiota dysbiosis emerges as a potential contributor to CCA progression, necessitating further exploration of their direct impact and mechanisms through in-depth research and clinical studies. In the future, extensive translational research efforts are imperative to bridge existing gaps and optimize therapeutic strategies to improve therapeutic outcomes for this complex malignancy.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shagun Misra
- Department of Radiotherapy and Oncology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Pek Lim Chu
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Peiyong Guan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ritambhra Nada
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Rajesh Gupta
- Department of GI Surgery, HPB, and Liver Transplantation, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Khwanta Kaewnarin
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Hong Lee Heng
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
| | - Vijay Kumar Srinivasalu
- Department of Medical Oncology, Mazumdar Shaw Medical Center, NH Health City Campus, Bommasandra, Bangalore 560099, India
| | - Rakesh Kapoor
- Department of Radiotherapy and Oncology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Deepika Singh
- SingHealth Duke-NUS Institute of Biodiversity Medicine, Singapore 168583, Singapore
| | - Poramate Klanrit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 73170, Thailand
| | - Jing Tan
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Sarinya Kongpetch
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Apinya Jusakul
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- Laboratory of Cancer Epigenome, Division of Medical Science, National Cancer Center Singapore, Singapore 168583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Center Singapore, Singapore 168583, Singapore
- Oncology Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Center, Singapore 168583, Singapore
| | - Jing Han Hong
- Cancer and Stem Cell Biology Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
2
|
Caligiuri A, Becatti M, Porro N, Borghi S, Marra F, Pastore M, Taddei N, Fiorillo C, Gentilini A. Oxidative Stress and Redox-Dependent Pathways in Cholangiocarcinoma. Antioxidants (Basel) 2023; 13:28. [PMID: 38247453 PMCID: PMC10812651 DOI: 10.3390/antiox13010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a primary liver tumor that accounts for 2% of all cancer-related deaths worldwide yearly. It can arise from cholangiocytes of biliary tracts, peribiliary glands, and possibly from progenitor cells or even hepatocytes. CCA is characterized by high chemoresistance, aggressiveness, and poor prognosis. Potentially curative surgical therapy is restricted to a small number of patients with early-stage disease (up to 35%). Accumulating evidence indicates that CCA is an oxidative stress-driven carcinoma resulting from chronic inflammation. Oxidative stress, due to enhanced reactive oxygen species (ROS) production and/or decreased antioxidants, has been recently suggested as a key factor in cholangiocyte oncogenesis through gene expression alterations and molecular damage. However, due to different experimental models and conditions, contradictory results regarding oxidative stress in cholangiocarcinoma have been reported. The role of ROS and antioxidants in cancer is controversial due to their context-dependent ability to stimulate tumorigenesis and support cancer cell proliferation or promote cell death. On these bases, the present narrative review is focused on illustrating the role of oxidative stress in cholangiocarcinoma and the main ROS-driven intracellular pathways. Heterogeneous data about antioxidant effects on cancer development are also discussed.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Nunzia Porro
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Serena Borghi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Mirella Pastore
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (M.B.); (N.P.); (S.B.); (N.T.)
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (A.C.); (F.M.); (M.P.)
| |
Collapse
|
3
|
Kaewlert W, Sakonsinsiri C, Lert-itthiporn W, Ungarreevittaya P, Pairojkul C, Pinlaor S, Murata M, Thanan R. Overexpression of Insulin Receptor Substrate 1 (IRS1) Relates to Poor Prognosis and Promotes Proliferation, Stemness, Migration, and Oxidative Stress Resistance in Cholangiocarcinoma. Int J Mol Sci 2023; 24:ijms24032428. [PMID: 36768755 PMCID: PMC9916965 DOI: 10.3390/ijms24032428] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Cholangiocarcinoma (CCA) is one of the oxidative stress-driven carcinogenesis through chronic inflammation. Insulin receptor substrate 1 (IRS1), an adaptor protein of insulin signaling pathways, is associated with the progression of many inflammation-related cancers. This study hypothesized that oxidative stress regulates IRS1 expression and that up-regulation of IRS1 induces CCA progression. The localizations of IRS1 and an oxidative stress marker (8-oxodG) were detected in CCA tissues using immunohistochemistry (IHC). The presence of IRS1 in CCA tissues was confirmed using immortal cholangiocyte cells (MMNK1), a long-term oxidative-stress-induced cell line (ox-MMNK1-L), and five CCA cell lines as cell culture models. IRS1 was overexpressed in tumor cells and this was associated with a shorter patient survival time and an increase in 8-oxodG. IRS1 expression was higher in ox-MMNK1-L cells than in MMNK1 cells. Knockdown of IRS1 by siRNA in two CCA cell lines led to inhibition of proliferation, cell cycle progression, migration, invasion, stemness, and oxidative stress resistance properties. Moreover, a transcriptomics study demonstrated that suppressing IRS1 in the KKU-213B CCA cell line reduced the expression levels of several genes and pathways involved in the cellular functions. The findings indicate that IRS1 is a key molecule in the connection between oxidative stress and CCA progression. Therefore, IRS1 and its related genes can be used as prognostic markers and therapeutic targets for CCA therapy.
Collapse
Affiliation(s)
- Waleeporn Kaewlert
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Worachart Lert-itthiporn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Piti Ungarreevittaya
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chawalit Pairojkul
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Somchai Pinlaor
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Raynoo Thanan
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Cholangiocarcinoma Research Institute, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Correspondence: ; Tel.: +66-43-363-265
| |
Collapse
|
4
|
Sritananuwat P, Sueangoen N, Thummarati P, Islam K, Suthiphongchai T. Blocking ERK1/2 signaling impairs TGF-β1 tumor promoting function but enhances its tumor suppressing role in intrahepatic cholangiocarcinoma cells. Cancer Cell Int 2017; 17:85. [PMID: 28959141 PMCID: PMC5615482 DOI: 10.1186/s12935-017-0454-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 09/19/2017] [Indexed: 12/19/2022] Open
Abstract
Background Transforming growth factor-β (TGF-β) plays a paradoxical role in cancer: it suppresses proliferation at early stages but promotes metastasis at late stages. This cytokine is upregulated in cholangiocarcinoma and is implicated in cholangiocarcinoma invasion and metastasis. Here we investigated the roles of non-Smad pathway (ERK1/2) and Smad in TGF-β tumor promoting and suppressing activities in intrahepatic cholangiocarcinoma (ICC) cells. Methods TGF-β1 effects on proliferation, invasion and migration of ICC cells, KKU-M213 and/or HuCCA-1, were investigated using MTT, colony formation, in vitro Transwell and wound healing assays. Levels of mRNAs and proteins/phospho-proteins were measured by quantitative (q)RT-PCR and Western blotting respectively. E-cadherin localization was examined by immunofluorescence and secreted MMP-9 activity was assayed by gelatin zymography. The role of ERK1/2 signaling was evaluated by treating cells with TGF-β1 in combination with MEK1/2 inhibitor U0126, and that of Smad2/3 and Slug using siSmad2/3- and siSlug-transfected cells. Results h-TGF-β1 enhanced KKU-M213 cell invasion and migration and induced epithelial-mesenchymal transition as shown by an increase in vimentin, Slug and secreted MMP-9 levels and by a change in E-cadherin localization from membrane to cytosol, while retaining the cytokine’s ability to attenuate cell proliferation. h-TGF-β1 stimulated Smad2/3 and ERK1/2 phosphorylation, and the MEK1/2 inhibitor U0126 attenuated TGF-β1-induced KKU-M213 cell invasion and MMP-9 production but moderately enhanced the cytokine growth inhibitory activity. The latter effect was more noticeable in HuCCA-1 cells, which resisted TGF-β-anti-proliferative activity. Smad2/3 knock-down suppressed TGF-β1 ability to induce ERK1/2 phosphorylation, Slug expression and cell invasion, whereas Slug knock-down suppressed cell invasion and vimentin expression but marginally affected ERK1/2 activation and MMP-9 secretion. These results indicate that TGF-β1 activated ERK1/2 through Smad2/3 but not Slug pathway, and that ERK1/2 enhanced TGF-β1 tumor promoting but repressed its tumor suppressing functions. Conclusions Inhibiting ERK1/2 activation attenuates TGF-β1 tumor promoting effect (invasion) but retains its tumor suppressing role, thereby highlighting the importance of ERK1/2 in resolving the TGF-β paradox switch. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0454-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phaijit Sritananuwat
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Natthaporn Sueangoen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand.,Present Address: Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Parichut Thummarati
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | - Kittiya Islam
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400 Thailand
| | | |
Collapse
|
5
|
Loilome W, Kadsanit S, Muisook K, Yongvanit P, Namwat N, Techasen A, Puapairoj A, Khuntikeo N, Phonjit P. Imbalanced adaptive responses associated with microsatellite instability in cholangiocarcinoma. Oncol Lett 2016; 13:639-646. [PMID: 28356940 PMCID: PMC5351183 DOI: 10.3892/ol.2016.5477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
The adaptive response of the genome protection mechanism occurs in cells when exposed to genotoxic stress due to the overproduction of free radicals via inflammation and infection. In such circumstances, cells attempt to maintain health via several genome protection mechanisms. However, evidence is increasing that this adaptive response may have deleterious effect; a reduction of antioxidant enzymes and/or imbalance in the DNA repair system generates microsatellite instability (MSI), which has procarcinogenic implications. Therefore, the present study hypothesized that MSI caused by imbalanced responses of antioxidant enzymes and/or DNA repair enzymes as a result of oxidative/nitrative stress arising from the inflammatory response is involved in liver fluke-associated cholangiocarcinogenesis. The present study investigated this hypothesis by identifying the expression patterns of antioxidant enzymes, including superoxide dismutase 2 (SOD2) and catalase (CAT), and DNA repair enzymes, including alkyladenine DNA glycosylase (AAG), apurinic endonuclease (APE) and DNA polymerase β (DNA pol β). In addition, the activities of the antioxidant enzymes, SOD2 and CAT, were examined in human cholangiocarcinoma (CCA) tissues using immunohistochemical staining. MSI was also analyzed in human CCA tissues. The resulting data demonstrated that the expression levels of the SOD2 and CAT enzymes decreased. The activities of SOD2 and CAT decreased significantly in the CCA tissues, compared with the hepatic tissue of cadaveric donors. In the DNA repairing enzymes, it was found that the expression levels of AAG and DNA pol β enzymes increased, whereas the expression of APE decreased. In addition, it was found that MSI-high was present in 69% of patients, whereas MSI-low was present in 31% of patients, with no patients classified as having microsatellite stability. In the patients, a MSI-high was correlated with poor prognosis, indicated by a shorter survival rate. These results indicated that the reduction of antioxidant enzymes and adaptive imbalance of base excision repair enzymes in human CCA caused MSI, and may be associated with the progression of cancer.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sasithorn Kadsanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Kanha Muisook
- Department of Forensics Science, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Medical Technology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pichai Phonjit
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Thanee M, Loilome W, Techasen A, Sugihara E, Okazaki S, Abe S, Ueda S, Masuko T, Namwat N, Khuntikeo N, Titapun A, Pairojkul C, Saya H, Yongvanit P. CD44 variant-dependent redox status regulation in liver fluke-associated cholangiocarcinoma: A target for cholangiocarcinoma treatment. Cancer Sci 2016; 107:991-1000. [PMID: 27176078 PMCID: PMC4946726 DOI: 10.1111/cas.12967] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
Expression of CD44, especially the variant isoforms (CD44v) of this major cancer stem cell marker, contributes to reactive oxygen species (ROS) defense through stabilizing xCT (a cystine–glutamate transporter) and promoting glutathione synthesis. This enhances cancer development and increases chemotherapy resistance. We investigate the role of CD44v in the regulation of the ROS defense system in cholangiocarcinoma (CCA). Immunohistochemical staining of CD44v and p38MAPK (a major ROS target) expression in Opisthorchis viverrini‐induced hamster CCA tissues (at 60, 90, 120, and 180 days) reveals a decreased phospho‐p38MAPK signal, whereas the CD44v signal was increased during bile duct transformation. Patients with CCA showed CD44v overexpression and negative‐phospho‐p38MAPK patients a significantly shorter survival rate than the low CD44v signal and positive‐phospho‐p38MAPK patients (P = 0.030). Knockdown of CD44 showed that xCT and glutathione levels were decreased, leading to a high level of ROS. We examined xCT‐targeted CD44v cancer stem cell therapy using sulfasalazine. Glutathione decreased and ROS increased after the treatment, leading to inhibition of cell proliferation and induction of cell death. Thus, the accumulation of CD44v leads to the suppression of p38MAPK in transforming bile duct cells. The redox status regulation of CCA cells depends on the expression of CD44v to contribute the xCT function and is a link to the poor prognosis of patients. Thus, an xCT inhibitor could inhibit cell growth and activate cell death. This suggests that an xCT‐targeting drug may improve CCA therapy by sensitization to the available drug (e.g. gemcitabine) by blocking the mechanism of the cell's ROS defensive system.
Collapse
Affiliation(s)
- Malinee Thanee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Anchalee Techasen
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Eiji Sugihara
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Shogo Okazaki
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Shinya Abe
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Japan.,Laboratory of Biological Protection, Department of Biological Responses, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Shiho Ueda
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Japan
| | - Takashi Masuko
- Cell Biology Laboratory, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Higashiosaka, Japan
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chawalit Pairojkul
- Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.,Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
7
|
Yothaisong S, Namwat N, Yongvanit P, Khuntikeo N, Puapairoj A, Jutabha P, Anzai N, Tassaneeyakul W, Tangsucharit P, Loilome W. Increase in L-type amino acid transporter 1 expression during cholangiocarcinogenesis caused by liver fluke infection and its prognostic significance. Parasitol Int 2015; 66:471-478. [PMID: 26657242 DOI: 10.1016/j.parint.2015.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/29/2015] [Accepted: 11/30/2015] [Indexed: 11/18/2022]
Abstract
L-type amino acid transporter 1 (LAT1) is highly expressed in various human cancers, including cholangiocarcinoma (CCA), the most common cancer in Northeast Thailand. Chronic inflammation and oxidative stress induced by liver fluke, Opisthorchis viverrini, infection has been recognized as the major cause of CCA in this area. We show here that an increased expression of LAT1 and its co-functional protein CD98 are found during carcinogenesis induced by Ov in hamster CCA tissues. We also demonstrate that oxidative stress induced by H2O2 is time-dependent and dramatically activates LAT1 and CD98 expression in immortal cholangiocytes (MMNK1). In addition, H2O2 treatment increased LAT1 and CD98 expression, as well as an activated form of AKT and mTOR in MMNK1 and CCA cell lines (KKU-M055 and KKU-M213). We also show that suppression of PI3K/AKT pathway activity with a dual PI3K/mTOR inhibitor, BEZ235, causes a reduction in LAT1 and CD98 expression in KKU-M055 and KKU-M213 in parallel with a reduction of activated AKT and mTOR. Interestingly, high expression of LAT1 in human CCA tissues is a significant prognostic factor for shorter survival. Taken together, our data show that LAT1 expression is significantly associated with CCA progression and cholangiocarcinogenesis induced by oxidative stress. Moreover, the expression of LAT1 and CD98 in CCA is possibly regulated by the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Supak Yothaisong
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nisana Namwat
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Narong Khuntikeo
- Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand
| | - Anucha Puapairoj
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Promsuk Jutabha
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Naohiko Anzai
- Department of Pharmacology and Toxicology, Dokkyo Medical University School of Medicine, Tochigi 321-0293, Japan
| | - Wichittra Tassaneeyakul
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panot Tangsucharit
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand; Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW We review the genetic, epigenetic and transcriptional landscape of liver fluke (Opisthorchis viverrini, Ov)-related cholangiocarcinoma (CCA). Its distinct alterations, as compared with non-Ov-related CCA may help shed light on its underlying molecular mechanisms. RECENT FINDINGS Recent whole-exome and targeted sequencing not only confirmed frequent mutations in known CCA-related genes including TP53 (44%), KRAS (16.7%) and SMAD4 (16.7%), but also revealed mutations in novel CCA-related genes associated with chromatin remodeling [BAP1 (2.8%), ARID1A (17.6%), MLL3 (13%) and IDH1/2 (2.8%)], WNT signaling [RNF43 (9.3%) and PEG3 (5.6%)] and KRAS/G protein signaling [GNAS (9.3%) and ROBO2 (9.3%)]. Interestingly, there is a significant difference in the frequency of mutated genes between Ov-related CCA and non-Ov-related CCA, such as p53 and IDH1/2, reflecting the impact of cause on pathogenesis. Altered DNA methylation and transcriptional profiles associated with xenobiotic metabolism and pro-inflammatory responses were also found in Ov-related CCA. SUMMARY Liver fluke-induced chronic inflammation plays a crucial role in cholangiocarcinogenesis, resulting in distinct signatures of genetic, epigenetic and transcriptional alterations. These alterations, when contrasted with non-Ov-related CCA, indicate a unique pathogenic process in Ov-related CCA and may have potential clinical implications on diagnostics, therapeutics and prevention.
Collapse
|
9
|
Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int J Mol Sci 2014; 16:193-217. [PMID: 25547488 PMCID: PMC4307243 DOI: 10.3390/ijms16010193] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen and nitrogen species have been implicated in diverse pathophysiological conditions, including inflammation, neurodegenerative diseases and cancer. Accumulating evidence indicates that oxidative damage to biomolecules including lipids, proteins and DNA, contributes to these diseases. Previous studies suggest roles of lipid peroxidation and oxysterols in the development of neurodegenerative diseases and inflammation-related cancer. Our recent studies identifying and characterizing carbonylated proteins reveal oxidative damage to heat shock proteins in neurodegenerative disease models and inflammation-related cancer, suggesting dysfunction in their antioxidative properties. In neurodegenerative diseases, DNA damage may not only play a role in the induction of apoptosis, but also may inhibit cellular division via telomere shortening. Immunohistochemical analyses showed co-localization of oxidative/nitrative DNA lesions and stemness markers in the cells of inflammation-related cancers. Here, we review oxidative stress and its significant roles in neurodegenerative diseases and cancer.
Collapse
|
10
|
Silakit R, Loilome W, Yongvanit P, Chusorn P, Techasen A, Boonmars T, Khuntikeo N, Chamadol N, Pairojkul C, Namwat N. Circulating miR-192 in liver fluke-associated cholangiocarcinoma patients: a prospective prognostic indicator. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:864-72. [PMID: 25131257 DOI: 10.1002/jhbp.145] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND This study aimed to investigate the miR-192 levels in patients' sera of liver fluke-associated cholangiocarcinoma (CCA) for a prospective prognostic indicator. METHODS MicroRNA polymerase chain reaction (PCR) array was performed using pooled serum samples from 11 CCA patients and nine healthy subjects. Selected miRNAs were verified for the differential levels in both sera and tumor tissues (of patients and Opisthorchis viverrini (Ov)-induced CCA model) using TaqMan miRNA expression assay. RESULTS Our results demonstrated that miR-192 was significantly higher in the serum of CCA patients than that in healthy subjects giving a sensitivity of 74% and specificity of 72% (area under the curve [AUC] = 0.803; 95% confidence interval [CI], 0.708-0.897, P < 0.0001). Serum miR-192 examined in Ov infected subjects and subjects with periductal fibrosis were increased but not statistically significantly when compared with healthy subjects. High levels of serum miR-192 were significantly correlated with lymph node metastasis (P = 0.047) and shorter survival compared with individuals with low levels of serum miR-192 (hazard ratio [HR] 2.076, 95% CI 1.004-4.291, P = 0.049). We also found that the expression levels of miR-192 appeared to be elevated in both CCA tissues of patients and in Ov-induced CCA tissues of a hamster model. CONCLUSIONS This finding indicates that elevated levels of miR-192 may be involved in CCA genesis and have a potential utility as a noninvasive prognostic indicator for CCA patients.
Collapse
Affiliation(s)
- Runglawan Silakit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Road, Khon Kaen, 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen, Thailand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Increased EphB2 expression predicts cholangiocarcinoma metastasis. Tumour Biol 2014; 35:10031-41. [DOI: 10.1007/s13277-014-2295-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/30/2014] [Indexed: 11/26/2022] Open
|
12
|
Loilome W, Bungkanjana P, Techasen A, Namwat N, Yongvanit P, Puapairoj A, Khuntikeo N, Riggins GJ. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells. Tumour Biol 2014; 35:5357-67. [PMID: 24549785 DOI: 10.1007/s13277-014-1698-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/26/2014] [Indexed: 12/13/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is pathologically activated in cholangiocarcinoma (CCA). Here, we determined the expression profile as well as biological role of activated Wnt/β-catenin signaling in CCA. The quantitative reverse transcription polymerase chain reaction demonstrated that Wnt3a, Wnt5a, and Wnt7b mRNA were significantly higher in CCA tissues than adjacent non-tumor tissues and normal liver tissues. Immunohistochemical staining revealed that Wnt3a, Wnt5a, and Wnt7b were positive in 92.1, 76.3, and 100 % of 38 CCA tissues studied. It was noted that Wnt3 had a low expression in tumor cells, whereas a high expression was mainly found in inflammatory cells. Interestingly, a high expression level of Wnt5a was significantly correlated to poor survival of CCA patients (P=0.009). Membrane localization of β-catenin was reduced in the tumors compared to normal bile duct epithelia, and we also found that 73.7 % of CCA cases showed the cytoplasmic localization. Inflammation is known to be a risk factor for CCA development, and we tested whether this might induce Wnt/β-catenin signaling. We found that lipopolysaccharides (LPS) elevated the expression of Wnt3 both mRNA and protein levels in the macrophage cell line. Additionally, the conditioned media taken from LPS-induced activated macrophage culture promoted β-catenin accumulation in CCA cells. Furthermore, transient suppression of β-catenin by siRNA significantly induced growth inhibition of CCA cells, concurrently with decreasing cyclin D1 protein level. In conclusion, the present study reports the abundant expression of Wnt protein family and β-catenin in CCA as well as the effect of inflammatory condition on Wnt/β-catenin activation in CCA cells. Importantly, abrogation of β-catenin expression caused significant CCA cell growth inhibition. Thus, the Wnt/β-catenin signaling pathway may contribute to CCA cell proliferation and hence may serve as a prognostic marker for CCA progression and provide a potential target for CCA therapy.
Collapse
Affiliation(s)
- Watcharin Loilome
- Department of Biochemistry and Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Yongvanit P, Pinlaor S, Loilome W. Risk biomarkers for assessment and chemoprevention of liver fluke-associated cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:309-15. [DOI: 10.1002/jhbp.63] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine; Khon Kaen University; 123 Mitraparb Road Khon Kaen 40002 Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| | - Somchai Pinlaor
- Department of Parasitology, Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| | - Watcharin Loilome
- Department of Biochemistry, Faculty of Medicine; Khon Kaen University; 123 Mitraparb Road Khon Kaen 40002 Thailand
- Liver Fluke and Cholangiocarcinoma Research Center; Faculty of Medicine; Khon Kaen University; Khon Kaen Thailand
| |
Collapse
|
14
|
Vaeteewoottacharn K, Seubwai W, Bhudhisawasdi V, Okada S, Wongkham S. Potential targeted therapy for liver fluke associated cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2014; 21:362-70. [PMID: 24408866 DOI: 10.1002/jhbp.65] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biliary tree cancer or cholangiocarcinoma (CCA) is an unusual subtype of liver cancer with exceptionally poor prognosis. Lack of specific symptoms and availability of early diagnostic markers account for late diagnosis of CCA. Surgical treatment is a gold standard choice but few patients are candidates and local recurrence after surgery is high. Benefit of systemic chemotherapy is limited; hence, better treatment options are required. The differences in etiology, anatomical positions and pathology make it difficult to generalize all CCA subtypes for a single treatment regimen. Herein, we review the uniqueness of molecular profiling identified by multiple approaches, for example, serial analysis of gene expression, exome sequencing, transcriptomics/proteomics profiles, protein kinase profile, etc., that provide the opportunity for treatment of liver fluke-associated CCA. Anti-inflammatory, immunomodulator/immunosuppressor, epidermal growth factor receptor or platelet-derived growth factor receptor inhibitors, multi-targeted tyrosine kinase inhibitor, IL6 antagonist, nuclear factor-κB inhibitor, histone modulator, proteasome inhibitor as well as specific inhibitors suggested from various study approaches, such as MetAP2 inhibitor, 1,25(OH)2 D3 and cyclosporine A are suggested in this review for the treatments of this specific CCA subtype. This might provide an alternative treatment option for CCA patients; however, clinical trials in this specific CCA group are required.
Collapse
Affiliation(s)
- Kulthida Vaeteewoottacharn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, 123 Mitraparb Road, Khon Kaen, 40002, Thailand; Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | | | | | | |
Collapse
|
15
|
Calabretta A, Leumann CJ. Base pairing and miscoding properties of 1,N(6)-ethenoadenine- and 3,N(4)-ethenocytosine-containing RNA oligonucleotides. Biochemistry 2013; 52:1990-7. [PMID: 23425279 DOI: 10.1021/bi400116y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two RNA phosphoramidites containing the bases 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) were synthesized. These building blocks were incorporated into two 12-mer oligoribonucleotides for evaluation of the base pairing properties of these base lesions by UV melting curve (Tm) and circular dichroism measurements. The Tm data of the resulting duplexes with the etheno modifications opposing all natural bases showed a substantial destabilization compared to the corresponding natural duplexes, confirming their inability to form base pairs. The coding properties of these lesions were further investigated by introducing them into 31-mer oligonucleotides and assessing their ability to serve as templates in primer extension reactions with HIV, AMV, and MMLV reverse transcriptases (RT). Primer extension reactions showed complete arrest of the incorporation process using MMLV RT and AMV RT, while HIV RT preferentially incorporates dAMP opposite εA and dAMP as well as dTMP opposite εC. The properties of these RNA lesions are discussed in the context of its putative biological role.
Collapse
Affiliation(s)
- Alessandro Calabretta
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | | |
Collapse
|
16
|
Chusorn P, Namwat N, Loilome W, Techasen A, Pairojkul C, Khuntikeo N, Dechakhamphu A, Talabnin C, Chan-On W, Ong CK, Teh BT, Yongvanit P. Overexpression of microRNA-21 regulating PDCD4 during tumorigenesis of liver fluke-associated cholangiocarcinoma contributes to tumor growth and metastasis. Tumour Biol 2013; 34:1579-88. [PMID: 23417858 DOI: 10.1007/s13277-013-0688-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/03/2013] [Indexed: 12/17/2022] Open
Abstract
MicroRNA, an endogenous noncoding RNA modulating gene expression, is a key molecule that by its dysregulation plays roles in inflammatory-driven carcinogenesis. This study aimed to investigate the role of oncomiR miR-21 and its target, the programmed cell death 4 (PDCD4) in tumor growth and metastasis of the liver fluke Opisthorchis viverrini-associated cholangiocarcinoma (CCA). The expression levels of miR-21 and PDCD4 were analyzed using the TaqMan miRNA expression assay and immunohistochemistry in liver tissues of both O. viverrini plus N-nitrosodimethylamine (NDMA)-treated hamsters and human CCA samples (n=23 cases). The functional assay for miR-21 was performed in CCA cell lines by the anti-miR-21 and pre-miR-21 transfection procedures. The peak of miR-21 levels were reached at 2 (hyperplastic lesions) and 6 (CCA) months of the O. viverrini plus NDMA-induced group and had a reverse response with its target PDCD4 proteins. In human CCA, miR-21 was overexpressed in tumor tissues when compared with nontumor tissues (P=0.0034) and had a negative correlation with PDCD4 protein (P=0.026). It was also found that high expression of miR-21 was significantly correlated with shorter survival (P<0.05) and lymph node metastasis (P=0.037) of CCA patients. Transient transfection of pre-miR-21 reduced the PDCD4 level and resulted in an increase of M213 CCA cell growth and wound-induced migration ability. These results indicated that miR-21 plays a role in the carcinogenesis and metastasis of O. viverrini-associated CCA by suppressing the function of PDCD4. Modulation of aberrantly expressed miR-21 may be a useful strategy to inhibit tumor cell phenotypes or improve response to chemotherapy.
Collapse
Affiliation(s)
- P Chusorn
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kuver R. Mechanisms of oxysterol-induced disease: insights from the biliary system. CLINICAL LIPIDOLOGY 2012; 7:537-548. [PMID: 23630545 PMCID: PMC3636558 DOI: 10.2217/clp.12.53] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oxysterols are oxidized species of cholesterol that are derived from exogenous (e.g. dietary) and endogenous (in vivo) sources. Oxysterols play critical roles in normal physiologic functions as well as in pathophysiologic processes in a variety of organ systems. This review provides an overview of oxysterol biology from the vantage point of the biliary system. Several oxysterols have been identified in human bile in the context of biliary tract infection and inflammation. This finding has led to investigations regarding the potential pathophysiologic significance of biliary oxysterols in diseases affecting the biliary system, with an emphasis on cholangiocarcinoma. Emerging evidence implicates specific oxysterols in the development and progression of this malignancy. This review will summarize the literature on oxysterols in the biliary system and discuss how the accumulated evidence contributes to a hypothesis describing the molecular basis of cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Rahul Kuver
- Division of Gastroenterology, Box 356424, Department of Medicine, University of Washington School of Medicine, 1959 Northeast Pacific Street, Seattle, WA 98195, USA, Tel.: +1 206 543 1305, ,
| |
Collapse
|
18
|
Thanan R, Oikawa S, Yongvanit P, Hiraku Y, Ma N, Pinlaor S, Pairojkul C, Wongkham C, Sripa B, Khuntikeo N, Kawanishi S, Murata M. Inflammation-induced protein carbonylation contributes to poor prognosis for cholangiocarcinoma. Free Radic Biol Med 2012; 52:1465-72. [PMID: 22377619 DOI: 10.1016/j.freeradbiomed.2012.01.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/17/2012] [Accepted: 01/23/2012] [Indexed: 01/07/2023]
Abstract
Carbonylation is an irreversible and irreparable protein modification induced by oxidative stress. Cholangiocarcinoma (CCA) is associated with chronic inflammation caused by liver fluke infection. To investigate the relationship between protein carbonylation and CCA progression, carbonylated proteins were detected by 2D OxyBlot and identified by MALDI-TOF/TOF analyses in pooled CCA tissues in comparison to adjacent nontumor tissues and normal liver tissues. We identified 14 highly carbonylated proteins in CCA tissues. Immunoprecipitation and Western blot analyses of individual samples confirmed significantly greater carbonylation of serotransferrin, heat shock protein 70-kDa protein 1 (HSP70.1), and α1-antitrypsin (A1AT) in tumor tissues compared to normal tissues. The oxidative modification of these proteins was significantly associated with poor prognoses as determined by the Kaplan-Meier method. LC-MALDI-TOF/TOF mass spectrometry identified R50, K327, and P357 as carbonylated sites in serotransferrin, HSP70.1, and A1AT, respectively. Moreover, iron accumulation was significantly higher in CCA tissues with, compared to those without, carbonylated serotransferrin. We conclude that carbonylated serotransferrin-associated iron accumulation may induce oxidative stress via the Fenton reaction, and the carbonylation of HSP70.1 with antioxidative property and A1AT with protease inhibitory capacity may cause them to become dysfunctional, leading to CCA progression.
Collapse
Affiliation(s)
- Raynoo Thanan
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Jusakul A, Loilome W, Namwat N, Haigh WG, Kuver R, Dechakhamphu S, Sukontawarin P, Pinlaor S, Lee SP, Yongvanit P. Liver fluke-induced hepatic oxysterols stimulate DNA damage and apoptosis in cultured human cholangiocytes. Mutat Res 2011; 731:48-57. [PMID: 22044627 DOI: 10.1016/j.mrfmmm.2011.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 10/12/2011] [Accepted: 10/18/2011] [Indexed: 12/12/2022]
Abstract
Oxysterols are cholesterol oxidation products that are generated by enzymatic reactions through cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols have been identified in bile in the setting of chronic inflammation, suggesting that biliary epithelial cells are chronically exposed to these compounds in certain clinical settings. We hypothesized that biliary oxysterols resulting from liver fluke infection participate in cholangiocarcinogenesis. Using gas chromatography/mass spectrometry, we identified oxysterols in livers from hamsters infected with Opisthorchis viverrini that develop cholangiocarcinoma. Five oxysterols were found: 7-keto-cholesta-3,5-diene (7KD), 3-keto-cholest-4-ene (3K4), 3-keto-cholest-7-ene (3K7), 3-keto-cholesta-4,6-diene (3KD), and cholestan-3β,5α,6β-triol (Triol). Triol and 3K4 were found at significantly higher levels in the livers of hamsters with O. viverrini-induced cholangiocarcinoma. We therefore investigated the effects of Triol and 3K4 on induction of cholangiocarcinogenesis using an in vitro human cholangiocyte culture model. Triol- and 3K4-treated cells underwent apoptosis. Western blot analysis showed significantly increased levels of Bax and decreased levels of Bcl-2 in these cells. Increased cytochrome c release from mitochondria was found following treatment with Triol and 3K4. Triol and 3K4 also induced formation of the DNA adducts 1,N(6)-etheno-2'-deoxyadenosine, 3,N(4)-etheno-2'-deoxycytidine and 8-oxo-7,8-dihydro-2'-deoxyguanosine in cholangiocytes. The data suggest that Triol and 3K4 cause DNA damage via oxidative stress. Chronic liver fluke infection increases production of the oxysterols Triol and 3K4 in the setting of chronic inflammation in the biliary system. These oxysterols induce apoptosis and DNA damage in cholangiocytes. Insufficient and impaired DNA repair of such mutated cells may enhance clonal expansion and further drive the change in cellular phenotype from normal to malignant.
Collapse
Affiliation(s)
- Apinya Jusakul
- Department of Biochemistry, Khon Kaen University, Khon Kaen, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yongvanit P, Pinlaor S, Bartsch H. Oxidative and nitrative DNA damage: key events in opisthorchiasis-induced carcinogenesis. Parasitol Int 2011; 61:130-5. [PMID: 21704729 DOI: 10.1016/j.parint.2011.06.011] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/08/2011] [Accepted: 06/11/2011] [Indexed: 12/16/2022]
Abstract
Chronic inflammation induced by liver fluke (Opisthorchis viverrini) infection is the major risk factor for cholangiocarcinoma (CCA) in Northeastern Thailand. Increased levels of proinflammatory cytokines and nuclear factor kappa B that control cyclooxygenase-2 and inducible nitric oxide activities, disturb the homeostasis of oxidants/anti-oxidants and DNA repair enzymes, all of which appear to be involved in O. viverrini-associated inflammatory processes and CCA. Consequently oxidative and nitrative stress-related cellular damage occurs due to the over production of reactive oxygen and nitrogen species in inflamed target cells. This is supported by the detection of high levels of oxidized DNA and DNA bases modified by lipid peroxidation products in both animal and human tissues affected by O. viverrini-infection. Treatment of opisthorchiasis patients with praziquantel, an anti- trematode drug was shown to reduce inflammation-mediated tissue damage and carcinogenesis. The principal mechanisms that govern the effects of inflammation and immunity in liver fluke-associated cholangiocarcinogenesis are reviewed. The validity of inflammation-related biomolecules and DNA damage products to serve as predictive biomarkers for disease risk evaluation and intervention is discussed.
Collapse
Affiliation(s)
- Puangrat Yongvanit
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
| | | | | |
Collapse
|
21
|
Jusakul A, Yongvanit P, Loilome W, Namwat N, Kuver R. Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis 2011; 10:44. [PMID: 21388551 PMCID: PMC3061933 DOI: 10.1186/1476-511x-10-44] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 03/09/2011] [Indexed: 12/28/2022] Open
Abstract
Oxysterols are oxidation products of cholesterol that are generated by enzymatic reactions mediated by cytochrome P450 family enzymes or by non-enzymatic reactions involving reactive oxygen and nitrogen species. Oxysterols play various regulatory roles in normal cellular processes such as cholesterol homeostasis by acting as intermediates in cholesterol catabolism. Pathological effects of oxysterols have also been described, and various reports have implicated oxysterols in several disease states, including atherosclerosis, neurological disease, and cancer. Numerous studies show that oxysterols are associated with various types of cancer, including cancers of the colon, lung, skin, breast and bile ducts. The molecular mechanisms whereby oxysterols contribute to the initiation and progression of cancer are an area of active investigation. This review focuses on the current state of knowledge regarding the role of oxysterols in carcinogenesis. Mutagenicity of oxysterols has been described in both nuclear and mitochondrial DNA. Certain oxysterols such as cholesterol-epoxide and cholestanetriol have been shown to be mutagenic and genotoxic. Oxysterols possess pro-oxidative and pro-inflammatory properties that can contribute to carcinogenesis. Oxysterols can induce the production of inflammatory cytokines such as interleukin-8 and interleukin-1β. Certain oxysterols are also involved in the induction of cyclo-oxygenase-2 expression. Inflammatory effects can also be mediated through the activation of liver-X-receptor, a nuclear receptor for oxysterols. Thus, several distinct molecular mechanisms have been described showing that oxysterols contribute to the initiation and progression of cancers arising in various organ systems.
Collapse
Affiliation(s)
- Apinya Jusakul
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Khaen, Thailand
| | | | | | | | | |
Collapse
|