1
|
Yan H, Carlson DJ, Abolfath R, Liu W. Microdosimetric Investigation and a Novel Model of Radiosensitization in the Presence of Metallic Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13122191. [PMID: 34959471 PMCID: PMC8709133 DOI: 10.3390/pharmaceutics13122191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/02/2022] Open
Abstract
Auger cascades generated in high atomic number nanoparticles (NPs) following ionization were considered a potential mechanism for NP radiosensitization. In this work, we investigated the microdosimetric consequences of the Auger cascades using the theory of dual radiation action (TDRA), and we propose the novel Bomb model as a general framework for describing NP-related radiosensitization. When triggered by an ionization event, the Bomb model considers the NPs that are close to a radiation sensitive cellular target, generates dense secondary electrons and kills the cells according to a probability distribution, acting like a “bomb.” TDRA plus a distance model were used as the theoretical basis for calculating the change in α of the linear-quadratic survival model and the relative biological effectiveness (RBE). We calculated these quantities for SQ20B and Hela human cancer cells under 250 kVp X-ray irradiation with the presence of gadolinium-based NPs (AGuIXTM), and 220 kVp X-ray irradiation with the presence of 50 nm gold NPs (AuNPs), respectively, and compared with existing experimental data. Geant4-based Monte Carlo (MC) simulations were used to (1) generate the electron spectrum and the phase space data of photons entering the NPs and (2) calculate the proximity functions and other related parameters for the TDRA and the Bomb model. The Auger cascade electrons had a greater proximity function than photoelectric and Compton electrons in water by up to 30%, but the resulting increases in α were smaller than those derived from experimental data. The calculated RBEs cannot explain the experimental findings. The relative increase in α predicted by TDRA was lower than the experimental result by a factor of at least 45 for SQ20B cells with AGuIX under 250 kVp X-ray irradiation, and at least four for Hela cells with AuNPs under 220 kVp X-ray irradiation. The application of the Bomb model to Hela cells with AuNPs under 220 kVp X-ray irradiation indicated that a single ionization event for NPs caused by higher energy photons has a higher probability of killing a cell. NPs that are closer to the cell nucleus are more effective for radiosensitization. Microdosimetric calculations of the RBE for cell death of the Auger electron cascade cannot explain the experimentally observed radiosensitization by AGuIX or AuNP, while the proposed Bomb model is a potential candidate for describing NP-related radiosensitization at low NP concentrations.
Collapse
Affiliation(s)
- Huagang Yan
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, China;
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, China
| | - David J. Carlson
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Ramin Abolfath
- Department of Radiation Physics and Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 75031, USA;
- Department of Radiation Oncology, New Jersey Urology, West Orange, NJ 07052, USA
| | - Wu Liu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence:
| |
Collapse
|
2
|
Cai TJ, Li S, Lu X, Zhang CF, Yuan JL, Zhang QZ, Tian XL, Lian DX, Li MS, Zhang Z, Liu G, Zhao H, Niu LM, Tian M, Hou CS, Liu QJ. Dose-effect relationships of 12C 6+ ions-induced dicentric plus ring chromosomes, micronucleus and nucleoplasmic bridges in human lymphocytes in vitro. Int J Radiat Biol 2021; 97:657-663. [PMID: 33704009 DOI: 10.1080/09553002.2021.1900945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The objective of this research was to explore the dose-effect relationships of dicentric plus ring (dic + r), micronucleus (MN) and nucleoplasmic bridges (NPB) induced by carbon ions in human lymphocytes. MATERIALS AND METHODS Venous blood samples were collected from three healthy donors. 12C6+ ions beam was used to irradiate the blood samples at the energy of 330 MeV and linear energy transfer (LET) of 50 keV/μm with a dose rate of 1 Gy/min in the spread-out Bragg peak. The irradiated doses were 0 (sham irradiation), 1, 2, 3, 4, 5 and 6 Gy. Dic + r chromosomes aberrations were scored in metaphases. The cytokinesis-block micronucleus cytome (CBMN) was conducted to analyze MN and NPB. The maximum low-dose relative biological effectiveness (RBEM) values of the induction of dic + r, MN and NPB in human lymphocytes for 12C6+ ions irradiation was calculated relative to 60Co γ-rays. RESULTS The frequencies of dic + r, MN and NPB showed significantly increases in a dose-depended manner after exposure to 12C6+ ions. The distributions of dic + r and MN exhibited overdispersion, while the distribution of NPB agreed with Poisson distribution at all doses. Linear-quadratic equations were established based on the frequencies of dic + r and MN. The dose-response curves of NPB frequencies followed a linear model. The derived RBEM values for dic + r, MN and NPB in human lymphocytes irradiated with 12C6+ ions were 8.07 ± 2.73, 2.69 ± 0.20 and 4.00 ± 2.69 in comparison with 60Co γ-rays. CONCLUSION The dose-response curves of carbon ions-induced dic + r, MN and NPB were constructed. These results could be helpful to improve radiation risk assessment and dose estimation after exposed to carbon ions irradiation.
Collapse
Affiliation(s)
- Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chun-Fei Zhang
- Central Medical District of PLA General Hospital, Beijing, P. R. China
| | - Ji-Long Yuan
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Xue-Lei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - De-Xing Lian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Ming-Sheng Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Zhen Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Gang Liu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Li-Mei Niu
- Gansu Province Center for Disease Control and Prevention, Lanzhou, Gansu, P. R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Chang-Song Hou
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P. R. China
| |
Collapse
|
3
|
Li X, Zha X, Wang Y, Jia R, Hu B, Zhao B. Toxic effects and foundation of proton radiation on the early-life stage of zebrafish development. CHEMOSPHERE 2018; 200:302-312. [PMID: 29494911 DOI: 10.1016/j.chemosphere.2018.02.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Proton is a major particle of space radiation environment and a prospective radiotherapy beam. However, its risk needs to be fully evaluated for the understanding and to establish the better protective strategy for astronaut and patient. Zebrafish is an ideal model for the toxicity studies on medicines and environmental genetic toxicants. In the current study, embryos of zebrafish at 24 h post-fertilization (hpf) were exposed to proton beam. Some toxic parameters of embryo-larval development were investigated. Microarray combining with qRT-PCR were used to detect the gene expression situation. Generally, fractions of a variety of abnormal phenotypes of embryos and larvae increased in a dose-dependent manner after irradiation. The copy number of mitochondria, the basal respiration rate and the maximum respiration rate of embryos significantly decreased after irradiation. Microarray data demonstrated that MAPK signaling pathway, cell communication, glycolysis and TGF-β signaling pathway were significantly affected in the irradiated group. The expressions of matrix metallopeptidase 9 (mmp9) and TIMP metallopeptidase inhibitor 2b (timp2b) genes, and enzymatic activity of MMP9 were significantly upregulated in irradiated group. Overall, these results suggest that acute radiation of proton severely affects the development of organism and results in aberration occurrence in the early stage of zebrafish development, which may relates to mitochondrial and glycolytic dysfunction.
Collapse
Affiliation(s)
- Xiaoman Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaodan Zha
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Rong Jia
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Burong Hu
- CAS Key Laboratory of Heavy Ion Radiation Biology and Medicine & Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
4
|
Si J, Zhou R, Song J, Gan L, Zhou X, Di C, Liu Y, Mao A, Zhao Q, Wang Y, Zhang H. Toxic effects of 56Fe ion radiation on the zebrafish (Danio rerio) embryonic development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:87-95. [PMID: 28267650 DOI: 10.1016/j.aquatox.2017.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
All living organisms and ecosystems are permanently exposed to ionizing radiation. Of all the types of ionizing radiation, heavy ions such as 56Fe have the potential to cause the most severe biological effects. We therefore examined the effects and potential mechanisms of iron ion irradiation on the induction of developmental toxicity and apoptosis in zebrafish embryos. Zebrafish embryos at 4h post-fertilization (hpf) were divided into five groups: a control group; and four groups irradiated with 0.5, 1, 2, and 4Gy radiation, respectively. Mortality and teratogenesis were significantly increased, and spontaneous movement, heart rate, and swimming distance were decreased in the irradiated groups, accompanied by increased apoptosis. mRNA levels of genes involved in the apoptotic pathway, including p53, bax, bcl-2, and caspase-3, were significantly affected by radiation exposure. Moreover, protein expression levels of P53 and Bcl-2 changed in accordance with the corresponding mRNA expression levels. In addition, we detected the protein expression levels of γ-H2AX, which is a biomarker for radiation-induced DNA double-strand breaks, and found that γ-H2AX protein levels were significantly increased in the irradiated groups. Overall, the results of this study improve our understanding of the mechanisms of iron ion radiation-induced developmental toxicity and apoptosis, potentially involving the induction of DNA damage and mitochondrial dysfunction. The findings of this study may aid future impact assessment of environmental radioactivity in fish.
Collapse
Affiliation(s)
- Jing Si
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Rong Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Jing'e Song
- Hospital of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - Lu Gan
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Xin Zhou
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Cuixia Di
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yang Liu
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Aihong Mao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Qiuyue Zhao
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Yupei Wang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China
| | - Hong Zhang
- Department of Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; Gansu Wuwei Institute of Medical Sciences, Wuwei 733000, China.
| |
Collapse
|
5
|
Zhang B, Liu B, Zhang H, Wang J. Erythrocyte stiffness during morphological remodeling induced by carbon ion radiation. PLoS One 2014; 9:e112624. [PMID: 25401336 PMCID: PMC4234377 DOI: 10.1371/journal.pone.0112624] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/03/2014] [Indexed: 12/21/2022] Open
Abstract
The adverse effect induced by carbon ion radiation (CIR) is still an unavoidable hazard to the treatment object. Thus, evaluation of its adverse effects on the body is a critical problem with respect to radiation therapy. We aimed to investigate the change between the configuration and mechanical properties of erythrocytes induced by radiation and found differences in both the configuration and the mechanical properties with involving in morphological remodeling process. Syrian hamsters were subjected to whole-body irradiation with carbon ion beams (1, 2, 4, and 6 Gy) or X-rays (2, 4, 6, and 12 Gy) for 3, 14 and 28 days. Erythrocytes in peripheral blood and bone marrow were collected for cytomorphological analysis. The mechanical properties of the erythrocytes were determined using atomic force microscopy, and the expression of the cytoskeletal protein spectrin-α1 was analyzed via western blotting. The results showed that dynamic changes were evident in erythrocytes exposed to different doses of carbon ion beams compared with X-rays and the control (0 Gy). The magnitude of impairment of the cell number and cellular morphology manifested the subtle variation according to the irradiation dose. In particular, the differences in the size, shape and mechanical properties of the erythrocytes were well exhibited. Furthermore, immunoblot data showed that the expression of the cytoskeletal protein spectrin-α1 was changed after irradiation, and there was a common pattern among its substantive characteristics in the irradiated group. Based on these findings, the present study concluded that CIR could induce a change in mechanical properties during morphological remodeling of erythrocytes. According to the unique characteristics of the biomechanical categories, we deduce that changes in cytomorphology and mechanical properties can be measured to evaluate the adverse effects generated by tumor radiotherapy. Additionally, for the first time, the current study provides a new strategy for enhancing the assessment of the curative effects and safety of clinical radiotherapy, as well as reducing adverse effects.
Collapse
Affiliation(s)
- Baoping Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| | - Bin Liu
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hong Zhang
- Department of Heavy Ion Radiation Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jizeng Wang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, 730000, PR China
- Key Laboratory of Mechanics on Disaster and Environment in Western China, The Ministry of Education of China, Lanzhou University, 730000, PR China
- Institute of Biomechanics and Medical Engineering, Lanzhou University, Lanzhou, 730000, PR China
| |
Collapse
|
6
|
Si J, Zhang H, Wang Z, Wu Z, Lu J, Di C, Zhou X, Wang X. Effects of (12)C(6+) ion radiation and ferulic acid on the zebrafish (Danio rerio) embryonic oxidative stress response and gene expression. Mutat Res 2013; 745-746:26-33. [PMID: 23535216 DOI: 10.1016/j.mrfmmm.2013.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 06/02/2023]
Abstract
The effects of carbon ion irradiation and ferulic acid (FA) on the induction of oxidative stress and alteration of gene expression were studied in zebrafish (Danio rerio) embryos. Zebrafish embryos at 8 hpf were divided into seven groups: the control group; the 1Gy, 3Gy and 7Gy irradiation groups; and three FA-pre-treated irradiation groups. In the irradiated groups, a significant increase in the teratogenesis of the zebrafish embryos and oxidative stress was accompanied by increased malondialdehyde (MDA) content, decreased glutathione (GSH) content and alterations in antioxidant enzyme activities (such as catalase [CAT] and superoxide dismutase [SOD]). Moreover, the mRNA levels for Cu/Zn-sod, Mn-sod, cat and gpx, the genes encoding these antioxidant proteins, were altered significantly. However, the mRNA expression patterns were not in accordance with those of the antioxidant enzymes and were more sensitive under low-dose irradiation. In addition, we detected the mRNA expression of ucp-2 and bcl-2, which are located at the mitochondrial inner membrane and related to reactive oxidative species (ROS) production. In the irradiated groups, the mRNA level of ucp-2 was significantly increased, whereas the mRNA level of bcl-2 was significantly decreased. Supplementation with FA, an antioxidant, was better able to reduce the irradiation-induced oxidative damage marked by changes in mortality, morphology, antioxidant enzyme activities and the MDA and GSH content, as well as in the mRNA expression levels. Overall, this study provided helpful information about the transcriptional effects of irradiation to better understand the mechanism of carbon ion-induced oxidative stress and FA-induced radioprotective effects.
Collapse
Affiliation(s)
- Jing Si
- Department of Heavy Ion Radiation Medicine, Chinese Academy of Sciences, Lanzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Comparative analysis of clastogen-induced chromosome aberrations observed with light microscopy and by means of atomic force microscopy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 753:29-35. [DOI: 10.1016/j.mrgentox.2012.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/12/2012] [Accepted: 12/15/2012] [Indexed: 11/22/2022]
|