1
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
2
|
Peng Q, Weng K, Li S, Xu R, Wang Y, Wu Y. A Perspective of Epigenetic Regulation in Radiotherapy. Front Cell Dev Biol 2021; 9:624312. [PMID: 33681204 PMCID: PMC7930394 DOI: 10.3389/fcell.2021.624312] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Radiation therapy (RT) has been employed as a tumoricidal modality for more than 100 years and on 470,000 patients each year in the United States. The ionizing radiation causes genetic changes and results in cell death. However, since the biological mechanism of radiation remains unclear, there is a pressing need to understand this mechanism to improve the killing effect on tumors and reduce the side effects on normal cells. DNA break and epigenetic remodeling can be induced by radiotherapy. Hence the modulation of histone modification enzymes may tune the radiosensitivity of cancer cells. For instance, histone deacetylase (HDAC) inhibitors sensitize irradiated cancer cells by amplifying the DNA damage signaling and inhibiting double-strand DNA break repair to influence the irradiated cells’ survival. However, the combination of epigenetic drugs and radiotherapy has only been evaluated in several ongoing clinical trials for limited cancer types, partly due to a lack of knowledge on the potential mechanisms on how radiation induces epigenetic regulation and chromatin remodeling. Here, we review recent advances of radiotherapy and radiotherapy-induced epigenetic remodeling and introduce related technologies for epigenetic monitoring. Particularly, we exploit the application of fluorescence resonance energy transfer (FRET) biosensors to visualize dynamic epigenetic regulations in single living cells and tissue upon radiotherapy and drug treatment. We aim to bridge FRET biosensor, epigenetics, and radiotherapy, providing a perspective of using FRET to assess epigenetics and provide guidance for radiotherapy to improve cancer treatment. In the end, we discuss the feasibility of a combination of epigenetic drugs and radiotherapy as new approaches for cancer therapeutics.
Collapse
Affiliation(s)
- Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kegui Weng
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States.,Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| | - Shitian Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Richard Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Yongzhong Wu
- Chongqing Cancer Hospital, Chongqing Cancer Institute, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
3
|
Sokolenko VL, Sokolenko SV. Interdependence of oxidative/antioxidant system indicators and thyroid status under conditions of prolonged exposure to small doses of radiation. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We have studied the interdependence of the intensity of oxidative processes/antioxidant level and the thyroid status parameters in a group of students aged 18–24 who lived for a long time in the territory of enhanced radioecological control (density of soil contamination by isotopes (137Cs 3.7 ∙ 104 – 18.5 ∙ 104 Bq/m2). We examined 50 people from relatively environmentally friendly areas (control group) and 50 people from IV radiation zone (experimental group). In the experimental group, there were no individuals with clinical manifestations of thyroid pathology. However, subgroups with signs of hyperthyroidism and hypothyroidism were identified. We evaluated the level of cortisol, thyrotrophic hormone (TSH), triiodothyronine (T3), thyroxine (T4), malonic dialdehyde (MDA), ceruloplasmin (CP), transferrin (Tf), sulfhydryl groups (SH); we calculated the oxidative stress index (OSI). The research was conducted one month before the examination time and also during the exams as a factor in increased emotional stress. A lowered CP level was found in the subgroup with signs of hypothyroidism; SH groups – in all subgroups, separated by thyroid status. The oxidative stress index was higher in all students examined of the experimental group, compared with the control. The growth of MDA level is marked in the experimental group – it is the most strongly pronounced in conditions of additional emotional load in people with signs of hyperthyroidism and hypothyroidism. CP level significantly decreased in the subgroup of hyperthyroidism on the background of T3 decrease. OSI increased in all students examined from the experimental group. In the subgroup of hypothyroidism it became significantly higher than in the subgroup of euthyroidism. A positive correlation between the levels of CP and T3 was found. The highest values of the correlation coefficients were noted for subgroups with signs of hyperthyroidism and hypothyroidism, with the coefficient significance increasing under conditions of emotional stress. The index of oxidative stress in the experimental group positively correlated with the level of TSH – in terms of emotional stress, the statistical significance of the coefficients disappeared. In the subgroups divided by thyroid status, variability of interactions between OSI and T3 was observed but it was not statistically significant. It was found that the participation of thyroid status in supporting redox homeostasis in people aged 18–24 who suffered from chronic small-doze radiation exposure was realized mainly by the influence on the antioxidant system. The ability of thyroid hormones to maintain a proper antioxidant state was suppressed in this group. The unbalanced relationship between thyroid hormones and oxidative stress indicators is strongly manifested under conditions of additional emotional stress.
Collapse
|
4
|
Li AL, Chung TS, Chan YN, Chen CL, Lin SC, Chiang YR, Lin CH, Chen CC, Ma N. microRNA expression pattern as an ancillary prognostic signature for radiotherapy. J Transl Med 2018; 16:341. [PMID: 30518388 PMCID: PMC6282371 DOI: 10.1186/s12967-018-1711-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Background In view of the limited knowledge of plasma biomarkers relating to cancer resistance to radiotherapy, we have set up screening, training and testing stages to investigate the microRNAs (miRNAs) expression profile in plasma to predict between the poor responsive and responsive groups after 6 months of radiotherapy. Methods Plasma was collected prior to and after radiotherapy, and the microRNA profiles were analyzed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) arrays. Candidate miRNAs were validated by single qRT-PCR assays from the training and testing set. The classifier for ancillary prognosis was developed by multiple logistic regression analysis to correlate the ratios of miRNAs expression levels with clinical data. Results We revealed that eight miRNAs expressions had significant changes after radiotherapy and the expression levels of miR-374a-5p, miR-342-5p and miR-519d-3p showed significant differences between the responsive and poor responsive groups in the pre-radiotherapy samples. The Kaplan–Meier curve analysis also showed that low miR-342-5p and miR-519d-3p expressions were associated with worse prognosis. Our results revealed two miRNA classifiers from the pre- and post-radiotherapy samples to predict radiotherapy response with area under curve values of 0.8923 and 0.9405. Conclusions The expression levels of miR-374a-5p, miR-342-5p and miR-519d-3p in plasma are associated with radiotherapy responses. Two miRNA classifiers could be developed as a potential non-invasive ancillary tool for predicting patient response to radiotherapy. Electronic supplementary material The online version of this article (10.1186/s12967-018-1711-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- An-Lun Li
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Tao-Sang Chung
- Department of Radiation Oncology, Landseed Hospital, Taoyuan, Taiwan
| | - Yao-Ning Chan
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chien-Lung Chen
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.,Department of Nephrology, Landseed Hospital, Taoyuan, Taiwan
| | - Shih-Chieh Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yun-Ru Chiang
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chen-Huan Lin
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan
| | - Chi-Ching Chen
- Department of Pathology and Laboratory Medicine, Landseed Hospital, Taoyuan, Taiwan
| | - Nianhan Ma
- Department of Biomedical Sciences and Engineering, Institute of Systems Biology and Bioinformatics, National Central University, Taoyuan, Taiwan.
| |
Collapse
|
5
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
6
|
Ngan Tran K, Choi JI. Gene expression profiling of rat livers after continuous whole-body exposure to low-dose rate of gamma rays. Int J Radiat Biol 2018; 94:434-442. [PMID: 29557699 DOI: 10.1080/09553002.2018.1455009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE To study gene expression modulation in response to continuous whole-body exposure to low-dose-rate gamma radiation and improve our understanding of the mechanism of this impact at the molecular basis. MATERIALS AND METHODS cDNA microarray method with complete pooling of samples was used to study expression changes in the transcriptome profile of livers from rats treated with prolonged low-dose-rate ionizing radiation (IR) relative to that of sham-irradiated rats. RESULTS Of the 209 genes that were two-fold-up or down-regulated, 143 were known genes of which 27 were found in previous literatures to be modulated by IR. Remarkably, there were a significant number of differentially expressed genes involved in hepatic lipid metabolism. CONCLUSION This study showed changes in transcriptome profile of livers from low-dose irradiated rats when compared with that of sham-irradiated ones. This study will be useful for studying the metabolic changes of human exposed for long term to cosmic ray such as in space and in polar regions.
Collapse
Affiliation(s)
- Kim Ngan Tran
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| | - Jong-Il Choi
- a Department of Biotechnology and Bioengineering, Interdisciplinary Program for Bioenergy & Biomaterials , Chonnam National University , Gwangju , South Korea
| |
Collapse
|
7
|
Sequential Serum Let-7 Is a Novel Biomarker to Predict Accelerated Reproliferation During Fractional Radiotherapy in Lung Cancer. Clin Lung Cancer 2016; 17:e95-e101. [DOI: 10.1016/j.cllc.2016.03.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
|
8
|
Yang G, Li W, Jiang H, Liang X, Zhao Y, Yu D, Zhou L, Wang G, Tian H, Han F, Cai L, Cui J. Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 2016; 139:2157-68. [PMID: 27299986 DOI: 10.1002/ijc.30235] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
It has been generally accepted that both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. However, accumulating evidence has shown that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation. LDR can stimulate proliferation of normal cells and activate their defense systems, while these biological effects are not observed in some cancer cell types. Although there is still no concordance on this matter, the fact that LDR has the potential to enhance the effects of cancer therapeutics and reduce the toxic side effects of anti-cancer therapy has garnered significant interest. Here, we provide an overview of the current knowledge regarding the experimental data detailing the different responses of normal and cancer tissues to LDR, the underlying mechanisms, and its significance in clinical application.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.,Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyu Jiang
- Health Examination Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guanjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China. .,Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY, 40202.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Global Gene Expression Alterations as a Crucial Constituent of Human Cell Response to Low Doses of Ionizing Radiation Exposure. Int J Mol Sci 2015; 17:ijms17010055. [PMID: 26729107 PMCID: PMC4730300 DOI: 10.3390/ijms17010055] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/21/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022] Open
Abstract
Exposure to ionizing radiation (IR) is inevitable to humans in real-life scenarios; the hazards of IR primarily stem from its mutagenic, carcinogenic, and cell killing ability. For many decades, extensive research has been conducted on the human cell responses to IR delivered at a low dose/low dose (LD) rate. These studies have shown that the molecular-, cellular-, and tissue-level responses are different after low doses of IR (LDIR) compared to those observed after a short-term high-dose IR exposure (HDIR). With the advent of high-throughput technologies in the late 1990s, such as DNA microarrays, changes in gene expression have also been found to be ubiquitous after LDIR. Very limited subset of genes has been shown to be consistently up-regulated by LDIR, including CDKN1A. Further research on the biological effects and mechanisms induced by IR in human cells demonstrated that the molecular and cellular processes, including transcriptional alterations, activated by LDIR are often related to protective responses and, sometimes, hormesis. Following LDIR, some distinct responses were observed, these included bystander effects, and adaptive responses. Changes in gene expression, not only at the level of mRNA, but also miRNA, have been found to crucially underlie these effects having implications for radiation protection purposes.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The incidence of differentiated thyroid cancer (DTC), especially among small tumors, is increasing worldwide, despite the fact that the mortality rate from thyroid cancer remains stable. Total thyroidectomy with or without radioiodine therapy is actually the standard treatment. In the last 2 decades, several studies have shown that lobectomy could be an alternative to total thyroidectomy in low-risk DTC without compromising overall survival. The aim of this article was to assess the role of conservative surgery (hemithyroidectomy) in DTC reviewing the literature data. RECENT FINDINGS Recent advances in diagnostic techniques allow treatment to be tailored to patients' needs. The latest consensus guidelines suggest that patients with high-risk tumors should undergo total thyroidectomy, whereas patients with small, low-risk, node-negative DTC may be candidates for conservative surgery. Careful risk evaluation and stratification makes it possible to individualize treatment, avoid overtreatment and guarantee a good long-term prognosis with low recurrence risk. Excellent prognosis of DTC would require large sample sizes and long-term follow-up for prospective trials comparing the outcomes of total thyroidectomy vs. lobectomy; however, there are several remarkable retrospective studies. SUMMARY Based on current clinical data, a conservative surgery might be appropriate for patients with low-risk DTC.
Collapse
|
11
|
Hekim N, Cetin Z, Nikitaki Z, Cort A, Saygili EI. Radiation triggering immune response and inflammation. Cancer Lett 2015; 368:156-63. [PMID: 25911239 DOI: 10.1016/j.canlet.2015.04.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 12/23/2022]
Abstract
Radiation therapy (RT) is a well-established but still under optimization branch of Cancer Therapy (CT). RT uses electromagnetic waves or charged particles in order to kill malignant cells, by accumulating the energy onto these cells. The issue at stake for RT, as well as for any other Cancer Therapy technique, is always to kill only cancer cells, without affecting the surrounding healthy ones. This perspective of CT is usually described under the terms "specificity" and "selectivity". Specificity and selectivity are the ideal goal, but the ideal is never entirely achieved. Thus, in addition to killing healthy cells, changes and effects are observed in the immune system after irradiation. In this review, we mainly focus on the effects of ionizing radiation on the immune system and its components like bone marrow. Additionally, we are interested in the effects and benefits of low-dose ionizing radiation on the hematopoiesis and immune response. Low dose radiation has been shown to induce biological responses like inflammatory responses, innate immune system activation and DNA repair (adaptive response). This review reveals the fact that there are many unanswered questions regarding the role of radiation as either an immune-activating (low dose) or immunosuppressive (high dose) agent.
Collapse
Affiliation(s)
- Nezih Hekim
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zafer Cetin
- Department of Medical Biology & Genetics, School of Medicine, SANKO University, Gaziantep, Turkey
| | - Zacharenia Nikitaki
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Aysegul Cort
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey; Department of Nutrition and Dietetics, Faculty of Health Sciences, SANKO University, Gaziantep, Turkey
| | - Eyup Ilker Saygili
- Department of Medical Biochemistry, School of Medicine, SANKO University, Gaziantep, Turkey.
| |
Collapse
|
12
|
miRNAs in tumor radiation response: bystanders or participants? Trends Mol Med 2014; 20:529-39. [PMID: 25153824 DOI: 10.1016/j.molmed.2014.07.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/18/2014] [Accepted: 07/18/2014] [Indexed: 12/21/2022]
Abstract
There is increasing interest in defining a functional association between miRNAs and tumor radiation response, with the double aim of rationally designing miRNA-based strategies to increase patient radiosensitivity and identifying novel biomarkers of treatment response. Although it has been demonstrated that several miRNAs directly regulate the expression of components of cell pathways relevant to radiosensitivity, and miRNA expression profiles change upon irradiation, understanding the causal role exerted by individual miRNAs in determining tumor radiation response is still at an early stage. Based on available experimental and clinical evidence, we discuss here the potential of miRNAs as targets and/or tools for modulating radioresponsivity at the clinical level, as well as possible predictive biomarkers, underlining present limits and future perspectives.
Collapse
|
13
|
Ory C, Ugolin N, Hofman P, Schlumberger M, Likhtarev IA, Chevillard S. Comparison of transcriptomic signature of post-Chernobyl and postradiotherapy thyroid tumors. Thyroid 2013; 23:1390-400. [PMID: 23521174 DOI: 10.1089/thy.2012.0318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND We previously identified two highly discriminating and predictive radiation-induced transcriptomic signatures by comparing series of sporadic and postradiotherapy thyroid tumors (322-gene signature), and by reanalyzing a previously published data set of sporadic and post-Chernobyl thyroid tumors (106-gene signature). The aim of the present work was (i) to compare the two signatures in terms of gene expression deregulations and molecular features/pathways, and (ii) to test the capacity of the postradiotherapy signature in classifying the post-Chernobyl series of tumors and reciprocally of the post-Chernobyl signature in classifying the postradiotherapy-induced tumors. METHODS We now explored if postradiotherapy and post-Chernobyl papillary thyroid carcinomas (PTC) display common molecular features by comparing molecular pathways deregulated in the two tumor series, and tested the potential of gene subsets of the postradiotherapy signature to classify the post-Chernobyl series (14 sporadic and 12 post-Chernobyl PTC), and reciprocally of gene subsets of the post-Chernobyl signature to classify the postradiotherapy series (15 sporadic and 12 postradiotherapy PTC), by using conventional principal component analysis. RESULTS We found that the five genes common to the two signatures classified the learning/training tumors (used to search these signatures) of both the postradiotherapy (seven PTC) and the post-Chernobyl (six PTC) thyroid tumor series as compared with the sporadic tumors (seven sporadic PTC in each series). Importantly, these five genes were also effective for classifying independent series of postradiotherapy (five PTC) and post-Chernobyl (six PTC) tumors compared to independent series of sporadic tumors (eight PTC and six PTC respectively; testing tumors). Moreover, part of each postradiotherapy (32 genes) and post-Chernobyl signature (16 genes) cross-classified the respective series of thyroid tumors. Finally, several molecular pathways deregulated in post-Chernobyl tumors matched those found to be deregulated in postradiotherapy tumors. CONCLUSIONS Overall, our data suggest that thyroid tumors that developed following either external exposure or internal (131)I contamination shared common molecular features, related to DNA repair, oxidative and endoplasmic reticulum stresses, allowing their classification as radiation-induced tumors in comparison with sporadic counterparts, independently of doses and dose rates, which suggests there may be a "general" radiation-induced signature of thyroid tumors.
Collapse
Affiliation(s)
- Catherine Ory
- 1 Laboratory of Experimental Oncology, Institute of Cellular and Molecular Radiation Biology (IRCM), Directorate of Life Sciences (DSV), Commission for Atomic Energy and Alternative Energies (CEA), Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
14
|
Boaventura P, Pereira D, Celestino R, Mendes A, Nakasawa T, Teixeira-Gomes J, Sobrinho-Simões M, Soares P. Genetic alterations in thyroid tumors from patients irradiated in childhood for tinea capitis treatment. Eur J Endocrinol 2013; 169:673-9. [PMID: 23966419 DOI: 10.1530/eje-13-0543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Exposure to ionizing radiation at young age is the strongest risk factor for the occurrence of papillary thyroid carcinoma (PTC). RET/PTC rearrangements are the most frequent genetic alterations associated with radiation-induced PTC, whereas BRAF and RAS mutations and PAX8-PPARG rearrangement have been associated with sporadic PTC. We decided to search for such genetic alterations in PTCs of patients subjected in childhood to scalp irradiation. DESIGN We studied 67 thyroid tumors from 49 individuals irradiated in childhood for tinea capitis scalp epilation: 36 malignant (12 cases of conventional PTC (cPTC), two cPTC metastases, 20 cases of follicular variant PTC (FVPTC), one oncocytic variant of PTC and one follicular carcinoma) and 31 follicular thyroid adenomas. METHODS The lesions were screened for the BRAF(V600E) and NRAS mutations and for RET/PTC and PAX8-PPARG rearrangements. RESULTS BRAF(V600E) mutation was detected in seven of 14 (50%) cPTC and two of 20 FVPTC (10%) (P=0.019). NRAS mutation was present in one case of FVPTC (5%). RET/PTC1 rearrangement was found, by RT-PCR, in one of 17 cases (5.9%) and by fluorescence in situ hybridization in two of six cases (33%). PAX8-PPARG rearrangement was not detected in any carcinoma. None of the follicular adenomas presented any of the aforementioned genetic alterations. CONCLUSIONS The prevalence of BRAF(V600E) mutation in our series is the highest reported in series of PTCs arising in radiation-exposed individuals. The prevalence of RET/PTC1 rearrangement fits with the values recently described in a similar setting.
Collapse
Affiliation(s)
- Paula Boaventura
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Dr Roberto Frias s/n, 4200-465 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Joly-Tonetti N, Viñuelas J, Gandrillon O, Lamartine J. Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation. BMC Genomics 2013; 14:184. [PMID: 23496899 PMCID: PMC3610249 DOI: 10.1186/1471-2164-14-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs), a group of short non-coding RNAs that negatively regulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity is an important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. Results We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. We found that proliferative cells irradiated at 6 Gy display a global fall of miRNA expression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated by these responding miRNAs. Conclusions Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern strongly related to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation response to ensure the short-term survival of irradiated keratinocytes.
Collapse
|
16
|
MicroRNAs in the ionizing radiation response and in radiotherapy. Curr Opin Genet Dev 2013; 23:12-9. [PMID: 23453900 DOI: 10.1016/j.gde.2013.01.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/28/2012] [Accepted: 01/09/2013] [Indexed: 12/15/2022]
Abstract
Radiotherapy is a form of cancer treatment that utilizes the ability of ionizing radiation to induce cell inactivation and cell death, generally via inflicting DNA double-strand breaks. However, different tumors and their normal surrounding tissues are not equally sensitive to radiation, posing a major challenge in the field: to seek out factors that influence radiosensitivity. In this review, we summarize the evidence for microRNA (miRNA) involvement in the radioresponse and discuss their potential as radiosensitizers. MicroRNAs are endogenous small, noncoding RNAs that regulate gene expression posttranscriptionally, influencing many processes including, as highlighted here, cellular sensitivity to radiation. Profiling studies demonstrate that miRNA expression levels change in response to radiation, while certain miRNAs, when overexpressed or knocked down, alter radiosensitivity. Finally, we discuss specific miRNA-target pairs that affect response to radiation and DNA damage as good potential targets for modulating radioresponsitivity.
Collapse
|
17
|
Steinberg CEW, Pietsch K, Saul N, Menzel S, Swain SC, Stürzenbaum SR, Menzel R. Transcript expression patterns illuminate the mechanistic background of hormesis in caenorhabditis elegans maupas. Dose Response 2013; 11:558-76. [PMID: 24298231 DOI: 10.2203/dose-response.12-024.steinberg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The animal model Caenorhabditis elegans was employed to study polyphenol- and humic substances-induced hormetic changes in lifespan. A detailed insight into the underlying mechanism of hormesis was uncovered by applying whole genome DNA microarray experimentation over a range of quercetin (Q), tannic acid (TA), and humic substances (HuminFeed(®), HF) concentrations. The transcriptional response to all exposures followed a non-linear mode which highlighted differential signaling and metabolic pathways. While low Q concentrations regulated processes improving the health of the nematodes, higher concentrations extended lifespan and modulated substantially the global transcriptional response. Over-represented transcripts were notably part of the biotransformation process: enhanced catabolism of toxic intermediates possibly contributes to the lifespan extension. The regulation of transcription, Dauer entry, and nucleosome suggests the presence of distinct exposure dependent differences in transcription and signaling pathways. TA- and HF-mediated transcript expression patterns were overall similar to each other, but changed across the concentration range indicating that their transcriptional dynamics are complex and cannot be attributed to a simple adaptive response. In contrast, Q-mediated hormesis was well aligned to fit the definition of an adaptive response. Simple molecules are more likely to induce an adaptive response than more complex molecules.
Collapse
|
18
|
Ory C, Ugolin N, Schlumberger M, Hofman P, Chevillard S. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination. Genes (Basel) 2011; 3:19-34. [PMID: 24704841 PMCID: PMC3899964 DOI: 10.3390/genes3010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/02/2023] Open
Abstract
Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.
Collapse
Affiliation(s)
- Catherine Ory
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Nicolas Ugolin
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Martin Schlumberger
- Institut Gustave Roussy, Department on Nuclear Medicine and Endocrine Oncology, Villejuif, and University Paris-Sud, F-94800, France.
| | | | - Sylvie Chevillard
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| |
Collapse
|