1
|
Rodriguez-Alvarez M, Kim D, Khobta A. EGFP Reporters for Direct and Sensitive Detection of Mutagenic Bypass of DNA Lesions. Biomolecules 2020; 10:biom10060902. [PMID: 32545792 PMCID: PMC7357151 DOI: 10.3390/biom10060902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
The sustainment of replication and transcription of damaged DNA is essential for cell survival under genotoxic stress; however, the damage tolerance of these key cellular functions comes at the expense of fidelity. Thus, translesion DNA synthesis (TLS) over damaged nucleotides is a major source of point mutations found in cancers; whereas erroneous bypass of damage by RNA polymerases may contribute to cancer and other diseases by driving accumulation of proteins with aberrant structure and function in a process termed “transcriptional mutagenesis” (TM). Here, we aimed at the generation of reporters suited for direct detection of miscoding capacities of defined types of DNA modifications during translesion DNA or RNA synthesis in human cells. We performed a systematic phenotypic screen of 25 non-synonymous base substitutions in a DNA sequence encoding a functionally important region of the enhanced green fluorescent protein (EGFP). This led to the identification of four loss-of-fluorescence mutants, in which any ulterior base substitution at the nucleotide affected by the primary mutation leads to the reversal to a functional EGFP. Finally, we incorporated highly mutagenic abasic DNA lesions at the positions of primary mutations and demonstrated a high sensitivity of detection of the mutagenic DNA TLS and TM in this system.
Collapse
Affiliation(s)
- Marta Rodriguez-Alvarez
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
| | - Daria Kim
- Novosibirsk State University, 1 Pirogova St., 630090 Novosibirsk, Russia;
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia
| | - Andriy Khobta
- Unit “Responses to DNA Lesions", Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 67, 55131 Mainz, Germany;
- Correspondence:
| |
Collapse
|
2
|
McIntyre J. Polymerase iota - an odd sibling among Y family polymerases. DNA Repair (Amst) 2019; 86:102753. [PMID: 31805501 DOI: 10.1016/j.dnarep.2019.102753] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022]
Abstract
It has been two decades since the discovery of the most mutagenic human DNA polymerase, polymerase iota (Polι). Since then, the biochemical activity of this translesion synthesis (TLS) enzyme has been extensively explored, mostly through in vitro experiments, with some insight into its cellular activity. Polι is one of four members of the Y-family of polymerases, which are the best characterized DNA damage-tolerant polymerases involved in TLS. Polι shares some common Y-family features, including low catalytic efficiency and processivity, high infidelity, the ability to bypass some DNA lesions, and a deficiency in 3'→5' exonucleolytic proofreading. However, Polι exhibits numerous properties unique among the Y-family enzymes. Polι has an unusual catalytic pocket structure and prefers Hoogsteen over Watson-Crick pairing, and its replication fidelity strongly depends on the template; further, it prefers Mn2+ ions rather than Mg2+ as catalytic activators. In addition to its polymerase activity, Polι possesses also 5'-deoxyribose phosphate (dRP) lyase activity, and its ability to participate in base excision repair has been shown. As a highly error-prone polymerase, its regulation is crucial and mostly involves posttranslational modifications and protein-protein interactions. The upregulation and downregulation of Polι are correlated with different types of cancer and suggestions regarding the possible function of this polymerase have emerged from studies of various cancer lines. Nonetheless, after twenty years of research, the biological function of Polι certainly remains unresolved.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
3
|
Huang D, Song Y, Liu Y, Qin Y. A new strain of Aspergillus tubingensis for high-activity pectinase production. Braz J Microbiol 2019; 50:53-65. [PMID: 30610493 DOI: 10.1007/s42770-018-0032-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 08/23/2018] [Indexed: 11/30/2022] Open
Abstract
Pectinase is a general term for a class of enzymes that decompose pectin. To obtain a fungal strain with high-activity pectinase of potential commercial importance, we screened microorganisms from the soil of vineyards, performed mutation breeding by ultraviolet (UV) and nitrosoguanidine (NTG) mutagenesis, and performed comparisons to commercially available pectinases. We found that the derived pectinase-producing strain Rn14-88A had the highest pectinase activity of 8363.215 U/mL, and identified it using internal transcribed spacer sequence analysis as Aspergillus tubingensis. Rn14-88A was the original strain for UV mutagenesis, from which mutant strain R-7-2-4 had the highest pectinase enzyme activity (9198.68 U/mL), which was a 9.99% increase compared to that of Rn14-88A. Following NTG mutagenesis of R-7-2-4, mutant strain Y1-3-2-6 had a pectinase enzyme activity of 9843.34 U/mL, which reflects a 6.36% increase compared to the pectinase activity of R-7-2-4. Subsequently, another round of NTG mutagenesis was performed on Y1-3-2-6, and the mutagenic strain Y2-6-3-4 exhibited an improved enzyme activity of 21,864.34 U/mL, which was 161.44% higher than that of Rn14-88A. Through liquid fermentation experiments of A. tubingensis Y2-6-3-4, it was determined that pectinase activity was the highest at a fermentation time of 20 h. Therefore, we conclude that A. tubingensis Y2-6-3-4 has potential for use in commercial production.
Collapse
Affiliation(s)
- Danmei Huang
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, 712100, Shaanxi, China. .,Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
4
|
Li Y, Bao L, Zhang R, Tang X, Zhang Q, Wang W. Insights into the error bypass of 1-Nitropyrene DNA adduct by DNA polymerase ι: A QM/MM study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Lee E, Fowler JD, Suo Z, Wu Z. Backbone assignment of the binary complex of the full length Sulfolobus solfataricus DNA polymerase IV and DNA. BIOMOLECULAR NMR ASSIGNMENTS 2017; 11:39-43. [PMID: 27738883 DOI: 10.1007/s12104-016-9717-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/08/2016] [Indexed: 05/03/2023]
Abstract
Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase, bypasses a wide range of DNA lesions in vitro and in vivo. In this paper, we report the backbone chemical shift assignments of the full length Dpo4 in its binary complex with a 14/14-mer DNA substrate. Upon DNA binding, several β-stranded regions in the isolated catalytic core and little finger/linker fragments of Dpo4 become more structured. This work serves as a foundation for our ongoing investigation of conformational dynamics of Dpo4 and future determination of the first solution structures of a DNA polymerase and its binary and ternary complexes.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Jason D Fowler
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA
| | - Zhengrong Wu
- Department of Chemistry and Biochemistry, The Ohio State University, 876 Biological Sciences, 484 West 12th Ave., Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Basu AK, Pande P, Bose A. Translesion Synthesis of 2'-Deoxyguanosine Lesions by Eukaryotic DNA Polymerases. Chem Res Toxicol 2016; 30:61-72. [PMID: 27760288 PMCID: PMC5241707 DOI: 10.1021/acs.chemrestox.6b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
With the discovery
of translesion synthesis DNA polymerases, great
strides have been made in the last two decades in understanding the
mode of replication of various DNA lesions in prokaryotes and eukaryotes.
A database search indicated that approximately 2000 articles on this
topic have been published in this period. This includes research involving
genetic and structural studies as well as in vitro experiments using purified DNA polymerases and accessory proteins.
It is a daunting task to comprehend this exciting and rapidly emerging
area of research. Even so, as the majority of DNA damage occurs at
2′-deoxyguanosine residues, this perspective attempts to summarize
a subset of this field, focusing on the most relevant eukaryotic DNA
polymerases responsible for their bypass.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Paritosh Pande
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| | - Arindam Bose
- Department of Chemistry, University of Connecticut , Storrs, Connecticut 06269, United States
| |
Collapse
|
7
|
Tokarsky EJ, Gadkari VV, Zahurancik WJ, Malik CK, Basu AK, Suo Z. Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases. DNA Repair (Amst) 2016; 46:20-28. [PMID: 27612622 DOI: 10.1016/j.dnarep.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/31/2016] [Accepted: 08/31/2016] [Indexed: 12/12/2022]
Abstract
3-Nitrobenzanthrone (3-NBA), a byproduct of diesel exhaust, is highly present in the environment and poses a significant health risk. Exposure to 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA), a bulky DNA lesion that is of particular importance due to its mutagenic and carcinogenic potential. If not repaired or bypassed during genomic replication, dGC8-N-ABA can stall replication forks, leading to senescence and cell death. Here we used pre-steady-state kinetic methods to determine which of the four human Y-family DNA polymerases (hPolη, hPolκ, hPolι, or hRev1) are able to catalyze translesion synthesis of dGC8-N-ABAin vitro. Our studies demonstrated that hPolη and hPolκ most efficiently bypassed a site-specifically placed dGC8-N-ABA lesion, making them good candidates for catalyzing translesion synthesis (TLS) of this bulky lesion in vivo. Consistently, our publication (Biochemistry 53, 5323-31) in 2014 has shown that small interfering RNA-mediated knockdown of hPolη and hPolκ in HEK293T cells significantly reduces the efficiency of TLS of dGC8-N-ABA. In contrast, hPolι and hRev1 were severely stalled by dGC8-N-ABA and their potential role in vivo was discussed. Subsequently, we determined the kinetic parameters for correct and incorrect nucleotide incorporation catalyzed by hPolη at various positions upstream, opposite, and downstream from dGC8-N-ABA. Notably, nucleotide incorporation efficiency and fidelity both decreased significantly during dGC8-N-ABA bypass and the subsequent extension step, leading to polymerase pausing and error-prone DNA synthesis by hPolη. Furthermore, hPolη displayed nucleotide concentration-dependent biphasic kinetics at the two polymerase pause sites, suggesting that multiple enzyme•DNA complexes likely exist during nucleotide incorporation.
Collapse
Affiliation(s)
- E John Tokarsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| | - Chanchal K Malik
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
8
|
Yagi T, Fujikawa Y, Sawai T, Takamura-Enya T, Ito-Harashima S, Kawanishi M. Error-Prone and Error-Free Translesion DNA Synthesis over Site-Specifically Created DNA Adducts of Aryl Hydrocarbons (3-Nitrobenzanthrone and 4-Aminobiphenyl). Toxicol Res 2015; 33:265-272. [PMID: 29071010 PMCID: PMC5654197 DOI: 10.5487/tr.2017.33.4.265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023] Open
Abstract
Aryl hydrocarbons such as 3-nitrobenzanthrone (NBA), 4-aminobiphenyl (ABP), acetylaminofluorene (AAF), benzo(a)pyrene (BaP), and 1-nitropyrene (NP) form bulky DNA adducts when absorbed by mammalian cells. These chemicals are metabolically activated to reactive forms in mammalian cells and preferentially get attached covalently to the N2 or C8 positions of guanine or the N6 position of adenine. The proportion of N2 and C8 guanine adducts in DNA differs among chemicals. Although these adducts block DNA replication, cells have a mechanism allowing to continue replication by bypassing these adducts: translesion DNA synthesis (TLS). TLS is performed by translesion DNA polymerases—Pol η, κ, ι, and ζ and Rev1—in an error-free or error-prone manner. Regarding the NBA adducts, namely, 2-(2′-deoxyguanosin-N2-yl)-3-aminobenzanthrone (dG-N2-ABA) and N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG-C8-ABA), dG-N2-ABA is produced more often than dG-C8-ABA, whereas dG-C8-ABA blocks DNA replication more strongly than dG-N2-ABA. dG-N2-ABA allows for a less error-prone bypass than dG-C8-ABA does. Pol η and κ are stronger contributors to TLS over dG-C8-ABA, and Pol κ bypasses dG-C8-ABA in an error-prone manner. TLS efficiency and error-proneness are affected by the sequences surrounding the adduct, as demonstrated in our previous study on an ABP adduct, N-(2′-deoxyguanosine-8-yl)-4-aminobiphenyl (dG-C8-ABP). Elucidation of the general mechanisms determining efficiency, error-proneness, and the polymerases involved in TLS over various adducts is the next step in the research on TLS. These TLS studies will clarify the mechanisms underlying aryl hydrocarbon mutagenesis and carcinogenesis in more detail.
Collapse
Affiliation(s)
- Takashi Yagi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Yoshihiro Fujikawa
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Tomoko Sawai
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Takeji Takamura-Enya
- Department of Applied Chemistry, Kanagawa Institute of Technology, Atsugi, Kanagawa, Japan
| | - Sayoko Ito-Harashima
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Masanobu Kawanishi
- Department of Biology, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
| |
Collapse
|
9
|
Vyas R, Efthimiopoulos G, Tokarsky EJ, Malik CK, Basu AK, Suo Z. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase. J Am Chem Soc 2015; 137:12131-42. [PMID: 26327169 PMCID: PMC4582013 DOI: 10.1021/jacs.5b08027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1-Nitropyrene (1-NP), an environmental pollutant, induces DNA damage in vivo and is considered to be carcinogenic. The DNA adducts formed by the 1-NP metabolites stall replicative DNA polymerases but are presumably bypassed by error-prone Y-family DNA polymerases at the expense of replication fidelity and efficiency in vivo. Our running start assays confirmed that a site-specifically placed 8-(deoxyguanosin-N(2)-yl)-1-aminopyrene (dG(1,8)), one of the DNA adducts derived from 1-NP, can be bypassed by Sulfolobus solfataricus DNA polymerase IV (Dpo4), although this representative Y-family enzyme was paused strongly by the lesion. Pre-steady-state kinetic assays were employed to determine the low nucleotide incorporation fidelity and establish a minimal kinetic mechanism for the dG(1,8) bypass by Dpo4. To reveal a structural basis for dCTP incorporation opposite dG(1,8), we solved the crystal structures of the complexes of Dpo4 and DNA containing a templating dG(1,8) lesion in the absence or presence of dCTP. The Dpo4·DNA-dG(1,8) binary structure shows that the aminopyrene moiety of the lesion stacks against the primer/template junction pair, while its dG moiety projected into the cleft between the Finger and Little Finger domains of Dpo4. In the Dpo4·DNA-dG(1,8)·dCTP ternary structure, the aminopyrene moiety of the dG(1,8) lesion, is sandwiched between the nascent and junction base pairs, while its base is present in the major groove. Moreover, dCTP forms a Watson-Crick base pair with dG, two nucleotides upstream from the dG(1,8) site, creating a complex for "-2" frameshift mutation. Mechanistically, these crystal structures provide additional insight into the aforementioned minimal kinetic mechanism.
Collapse
Affiliation(s)
- Rajan Vyas
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Georgia Efthimiopoulos
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
| | - E. John Tokarsky
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| | - Chanchal K. Malik
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ashis K. Basu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, 43210, United States
- The Biophysics Ph.D. Program, The Ohio State University, Columbus, Ohio, 43210, United States
| |
Collapse
|
10
|
Lior-Hoffmann L, Ding S, Geacintov NE, Zhang Y, Broyde S. Structural and dynamic characterization of polymerase κ's minor groove lesion processing reveals how adduct topology impacts fidelity. Biochemistry 2014; 53:5683-91. [PMID: 25148552 PMCID: PMC4159208 DOI: 10.1021/bi5007964] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA
lesion bypass polymerases process different lesions with varying
fidelities, but the structural, dynamic, and mechanistic origins of
this phenomenon remain poorly understood. Human DNA polymerase κ
(Polκ), a member of the Y family of lesion bypass polymerases,
is specialized to bypass bulky DNA minor groove lesions in a predominantly
error-free manner, by housing them in its unique gap. We have investigated
the role of the unique Polκ gap and N-clasp structural features
in the fidelity of minor groove lesion processing with extensive molecular
modeling and molecular dynamics simulations to pinpoint their functioning
in lesion bypass. Here we consider the N2-dG covalent adduct derived from the carcinogenic aromatic amine,
2-acetylaminofluorene (dG-N2-AAF), that
is produced via the combustion of kerosene and diesel fuel. Our simulations
reveal how the spacious gap directionally accommodates the lesion
aromatic ring system as it transits through the stages of incorporation
of the predominant correct partner dCTP opposite the damaged guanine,
with preservation of local active site organization for nucleotidyl
transfer. Furthermore, flexibility in Polκ’s N-clasp
facilitates the significant misincorporation of dTTP opposite dG-N2-AAF via wobble pairing. Notably, we show that
N-clasp flexibility depends on lesion topology, being markedly reduced
in the case of the benzo[a]pyrene-derived major adduct
to N2-dG, whose bypass by Polκ is
nearly error-free. Thus, our studies reveal how Polκ’s
unique structural and dynamic properties can regulate its bypass fidelity
of polycyclic aromatic lesions and how the fidelity is impacted by
lesion structures.
Collapse
Affiliation(s)
- Lee Lior-Hoffmann
- Department of Biology and ‡Department of Chemistry, New York University , 100 Washington Square East, New York, New York 10003, United States
| | | | | | | | | |
Collapse
|
11
|
Maxwell BA, Suo Z. Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases. Biochemistry 2014; 53:2804-14. [PMID: 24716482 PMCID: PMC4018064 DOI: 10.1021/bi5000405] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
![]()
The
kinetic mechanisms by which DNA polymerases catalyze DNA replication
and repair have long been areas of active research. Recently discovered
Y-family DNA polymerases catalyze the bypass of damaged DNA bases
that would otherwise block replicative DNA polymerases and stall replication
forks. Unlike DNA polymerases from the five other families, the Y-family
DNA polymerases have flexible, solvent-accessible active sites that
are able to tolerate various types of damaged template bases and allow
for efficient lesion bypass. Their promiscuous active sites, however,
also lead to fidelities that are much lower than those observed for
other DNA polymerases and give rise to interesting mechanistic properties.
Additionally, the Y-family DNA polymerases have several other unique
structural features and undergo a set of conformational changes during
substrate binding and catalysis different from those observed for
replicative DNA polymerases. In recent years, pre-steady-state kinetic
methods have been extensively employed to reveal a wealth of information
about the catalytic properties of these fascinating noncanonical DNA
polymerases. Here, we review many of the recent findings on the kinetic
mechanisms of DNA polymerization with undamaged and damaged DNA substrates
by the Y-family DNA polymerases, and the conformational dynamics employed
by these error-prone enzymes during catalysis.
Collapse
Affiliation(s)
- Brian A Maxwell
- Ohio State Biophysics Program and ‡Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
12
|
Taggart DJ, Camerlengo TL, Harrison JK, Sherrer SM, Kshetry AK, Taylor JS, Huang K, Suo Z. A high-throughput and quantitative method to assess the mutagenic potential of translesion DNA synthesis. Nucleic Acids Res 2013; 41:e96. [PMID: 23470999 PMCID: PMC3632128 DOI: 10.1093/nar/gkt141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular genomes are constantly damaged by endogenous and exogenous agents that covalently and structurally modify DNA to produce DNA lesions. Although most lesions are mended by various DNA repair pathways in vivo, a significant number of damage sites persist during genomic replication. Our understanding of the mutagenic outcomes derived from these unrepaired DNA lesions has been hindered by the low throughput of existing sequencing methods. Therefore, we have developed a cost-effective high-throughput short oligonucleotide sequencing assay that uses next-generation DNA sequencing technology for the assessment of the mutagenic profiles of translesion DNA synthesis catalyzed by any error-prone DNA polymerase. The vast amount of sequencing data produced were aligned and quantified by using our novel software. As an example, the high-throughput short oligonucleotide sequencing assay was used to analyze the types and frequencies of mutations upstream, downstream and at a site-specifically placed cis-syn thymidine-thymidine dimer generated individually by three lesion-bypass human Y-family DNA polymerases.
Collapse
Affiliation(s)
- David J Taggart
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|