1
|
Lemos IDS, Torres CA, Alano CG, Matiola RT, de Figueiredo Seldenreich R, Padilha APZ, De Pieri E, Effting PS, Machado-De-Ávila RA, Réus GZ, Leipnitz G, Streck EL. Memantine Improves Memory and Neurochemical Damage in a Model of Maple Syrup Urine Disease. Neurochem Res 2024; 49:758-770. [PMID: 38104040 DOI: 10.1007/s11064-023-04072-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is a metabolic disease characterized by the accumulation of branched-chain amino acids (BCAA) in different tissues due to a deficit in the branched-chain alpha-ketoacid dehydrogenase complex. The most common symptoms are poor feeding, psychomotor delay, and neurological damage. However, dietary therapy is not effective. Studies have demonstrated that memantine improves neurological damage in neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Therefore, we hypothesize that memantine, an NMDA receptor antagonist can ameliorate the effects elicited by BCAA in an MSUD animal model. For this, we organized the rats into four groups: control group (1), MSUD group (2), memantine group (3), and MSUD + memantine group (4). Animals were exposed to the MSUD model by the administration of BCAA (15.8 µL/g) (groups 2 and 4) or saline solution (0.9%) (groups 1 and 3) and treated with water or memantine (5 mg/kg) (groups 3 and 4). Our results showed that BCAA administration induced memory alterations, and changes in the levels of acetylcholine in the cerebral cortex. Furthermore, induction of oxidative damage and alterations in antioxidant enzyme activities along with an increase in pro-inflammatory cytokines were verified in the cerebral cortex. Thus, memantine treatment prevented the alterations in memory, acetylcholinesterase activity, 2',7'-Dichlorofluorescein oxidation, thiobarbituric acid reactive substances levels, sulfhydryl content, and inflammation. These findings suggest that memantine can improve the pathomechanisms observed in the MSUD model, and may improve oxidative stress, inflammation, and behavior alterations.
Collapse
Affiliation(s)
- Isabela da Silva Lemos
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Antunes Torres
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Carolina Giassi Alano
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rafaela Tezza Matiola
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Rejane de Figueiredo Seldenreich
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Alex Paulo Zeferino Padilha
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ellen De Pieri
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Pauline Souza Effting
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Ricardo Andrez Machado-De-Ávila
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Fisiopatologia Experimental, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Gislaine Zilli Réus
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Psiquiatria Translacional, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Emilio Luiz Streck
- Programa de Pós-graduação em Ciências da Saúde, Laboratório de Doenças Neurometabólicas, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
2
|
Deon M, Guerreiro G, Girardi J, Ribas G, Vargas CR. Treatment of maple syrup urine disease: Benefits, risks, and challenges of liver transplantation. Int J Dev Neurosci 2023; 83:489-504. [PMID: 37340513 DOI: 10.1002/jdn.10283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/06/2023] [Accepted: 05/21/2023] [Indexed: 06/22/2023] Open
Abstract
Maple syrup urine disease (MSUD) is caused by a deficiency in the activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex, promoting the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, as well as their respective α-keto acids. MSUD is an autosomal recessive hereditary metabolic disorder characterized by ketoacidosis, ataxia, coma, and mental and psychomotor retardation. The mechanisms involved in the brain damage caused by MSUD are not fully understood. Early diagnosis and treatment, as well as proper control of metabolic decompensation crises, are crucial for patients' survival and for a better prognosis. The recommended treatment consists of a high-calorie diet with restricted protein intake and specific formulas containing essential amino acids, except those accumulated in MSUD. This treatment will be maintained throughout life, being adjusted according to the patients' nutritional needs and BCAA concentration. Because dietary treatment may not be sufficient to prevent neurological damage in MSUD patients, other therapeutic strategies have been studied, including liver transplantation. With transplantation, it is possible to obtain an increase of about 10% of the normal BCKD in the body, an amount sufficient to maintain amino acid homeostasis and reduce metabolic decompensation crises. However, the experience related to this practice is very limited when considering the shortage of liver for transplantation and the risks related to the surgical procedure and immunosuppression. Thus, the purpose of this review is to survey the benefits, risks, and challenges of liver transplantation in the treatment of MSUD.
Collapse
Affiliation(s)
- Marion Deon
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gilian Guerreiro
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia Girardi
- Residência em Análises Clínicas do Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Graziela Ribas
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carmen Regla Vargas
- Faculdade de Farmácia, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Tokatly Latzer I, Pearl PL. Treatment of neurometabolic epilepsies: Overview and recent advances. Epilepsy Behav 2023; 142:109181. [PMID: 37001467 DOI: 10.1016/j.yebeh.2023.109181] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 05/08/2023]
Abstract
The rarity and heterogeneity of neurometabolic diseases make it challenging to reach evidence-based principles for their specific treatments. Indeed, current treatments for many of these diseases remain symptomatic and supportive. However, an ongoing scientific and medical revolution has led to dramatic breakthroughs in molecular sciences and genetics, revealing precise pathophysiologic mechanisms. Accordingly, this has led to significant progress in the development of novel therapeutic approaches aimed at treating epilepsy resulting from these conditions, as well as their other manifestations. We overview recent notable treatment advancements, from vitamins, trace minerals, and diets to unique medications targeting the elemental pathophysiology at a molecular or cellular level, including enzyme replacement therapy, enzyme enhancing therapy, antisense oligonucleotide therapy, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Itay Tokatly Latzer
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Rabelo F, Lemos IDS, Dal Toé CP, Casagrande DD, Freitas MLS, Quadra MR, Lima IR, Generoso JS, Michels M, Silveira PCL, Pizzol FD, Streck EL. Acute effects of intracerebroventricular administration of α-ketoisocaproic acid in young rats on inflammatory parameters. Metab Brain Dis 2023; 38:1573-1579. [PMID: 36897514 DOI: 10.1007/s11011-023-01193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is an autosomal recessive inborn error of metabolism (IEM), responsible for the accumulation of the branched-chain amino acids (BCAA) leucine, isoleucine, and valine, in addition to their α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) in the plasma and urine of patients. This process occurs due to a partial or total blockage of the dehydrogenase enzyme activity of branched-chain α-keto acids. Oxidative stress and inflammation are conditions commonly observed on IEM, and the inflammatory response may play an essential role in the pathophysiology of MSUD. We aimed to investigate the acute effect of intracerebroventricular (ICV) administration of KIC on inflammatory parameters in young Wistar rats. For this, sixteen 30-day-old male Wistar rats receive ICV microinjection with 8 µmol KIC. Sixty minutes later, the animals were euthanized, and the cerebral cortex, hippocampus, and striatum structures were collected to assess the levels of pro-inflammatory cytokines (INF-γ; TNF-α, IL-1β). The acute ICV administration of KIC increased INF-γ levels in the cerebral cortex and reduced the levels of INF-γ and TNF-α in the hippocampus. There was no difference in IL-1β levels. KIC was related to changes in the levels of pro-inflammatory cytokines in the brain of rats. However, the inflammatory mechanisms involved in MSUD are poorly understood. Thus, studies that aim to unravel the neuroinflammation in this pathology are essential to understand the pathophysiology of this IEM.
Collapse
Affiliation(s)
- Franciele Rabelo
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Isabela da S Lemos
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Camila P Dal Toé
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Débora D Casagrande
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Maria Luisa S Freitas
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Micaela R Quadra
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Igor R Lima
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Jaqueline S Generoso
- Laboratório de Neurologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Paulo C L Silveira
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Felipe Dal Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), Criciúma, Brazil.
| |
Collapse
|
5
|
L-carnitine Attenuates DNA Damage and Oxidative Stress in Diabetic Animals. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Diabetes is a metabolic disorder characterized by high plasma glucose levels. In this disease, increased production of reactive oxygen species (ROS) results in DNA damage and multiple complications. L-carnitine (LC) has shown a potent antioxidant activity that may reduce oxidative stress. Objectives: This study aims at assaying the effect of LC on DNA damage in streptozotocin-induced diabetic rats and evaluating the changes in antioxidant markers and liver function enzymes after the administration of LC . Methods: In the present study, for induction of diabetes, we injected a single dose of streptozotocin (65 mg/kg) by the intraperitoneal route, and diabetic rats were treated with LC 200, 300, and 400 mg/kg daily for 3 weeks. We detected the DNA damage at 7, 14, and 21 days after induction diabetes by the comet assay method. The blood glucose level, plasma alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were tested. Also, we measured the activity levels of superoxide dismutase (SOD) and intracellular glutathione (GSH). Results: The results of this study demonstrated the increasing amount of DNA damage with the amount and duration of hyperglycemia. L-carnitine treatment significantly decreased the parameters of genotoxicity such as % DNA in the tail, tail length, and tail moment over time. Moreover, the treatment of diabetic rats with LC 300 and 400 mg/kg/day after 21 days led to a remarkable decrease in blood glucose than diabetic rats. Also, we observed that LC can ameliorate enzyme liver function and reduce oxidative stress via enhancement of GSH and SOD levels. Conclusions: The results of this study indicated the protective effect of LC against DNA damage and oxidative stress in diabetic rats.
Collapse
|
6
|
Amaral AU, Wajner M. Pathophysiology of maple syrup urine disease: Focus on the neurotoxic role of the accumulated branched-chain amino acids and branched-chain α-keto acids. Neurochem Int 2022; 157:105360. [DOI: 10.1016/j.neuint.2022.105360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
|
7
|
Faverzani JL, Steinmetz A, Deon M, Marchetti DP, Guerreiro G, Sitta A, de Moura Coelho D, Lopes FF, Nascimento LVM, Steffens L, Henn JG, Ferro MB, Brito VB, Wajner M, Moura DJ, Vargas CR. L-carnitine protects DNA oxidative damage induced by phenylalanine and its keto acid derivatives in neural cells: a possible pathomechanism and adjuvant therapy for brain injury in phenylketonuria. Metab Brain Dis 2021; 36:1957-1968. [PMID: 34216350 DOI: 10.1007/s11011-021-00780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
Although phenylalanine (Phe) is known to be neurotoxic in phenylketonuria (PKU), its exact pathogenetic mechanisms of brain damage are still poorly known. Furthermore, much less is known about the role of the Phe derivatives phenylacetic (PAA), phenyllactic (PLA) and phenylpyruvic (PPA) acids that also accumulate in this this disorder on PKU neuropathology. Previous in vitro and in vivo studies have shown that Phe elicits oxidative stress in brain of rodents and that this deleterious process also occurs in peripheral tissues of phenylketonuric patients. In the present study, we investigated whether Phe and its derivatives PAA, PLA and PPA separately or in combination could induce reactive oxygen species (ROS) formation and provoke DNA damage in C6 glial cells. We also tested the role of L-carnitine (L-car), which has been recently considered an antioxidant agent and easily cross the blood brain barrier on the alterations of C6 redox status provoked by Phe and its metabolites. We first observed that cell viability was not changed by Phe and its metabolites. Furthermore, Phe, PAA, PLA and PPA, at concentrations found in plasma of PKU patients, provoked marked DNA damage in the glial cells separately and when combined. Of note, these effects were totally prevented (Phe, PAA and PPA) or attenuated (PLA) by L-car pre-treatment. In addition, a potent ROS formation also induced by Phe and PAA, whereas only moderate increases of ROS were caused by PPA and PLA. Pre-treatment with L-car also prevented Phe- and PAA-induced ROS generation, but not that provoked by PLA and PPA. Thus, our data show that Phe and its major metabolites accumulated in PKU provoke extensive DNA damage in glial cells probably by ROS formation and that L-car may potentially represent an adjuvant therapeutic agent in PKU treatment.
Collapse
Affiliation(s)
- Jéssica Lamberty Faverzani
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| | - Aline Steinmetz
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Desirèe Padilha Marchetti
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gilian Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Franciele Fatima Lopes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Luiza Steffens
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Jeferson Gustavo Henn
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Matheus Bernardes Ferro
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Verônica Bidinotto Brito
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Departamento de Fisioterapia, Faculdades Integradas de Taquara (FACCAT), Taquara, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Mescka CP, de Moura Coelho D, Sitta A, Catarino F, Donida B, Rosa AP, Gonzalez EA, Pinheiro CV, Poletto F, Baldo G, Dutra-Filho CS, Vargas CR. Preliminary results of PBA-loaded nanoparticles development and the effect on oxidative stress and neuroinflammation in rats submitted to a chemically induced chronic model of MSUD. Metab Brain Dis 2021; 36:1015-1027. [PMID: 33620579 DOI: 10.1007/s11011-021-00686-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.
Collapse
Affiliation(s)
- Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Felipe Catarino
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Bruna Donida
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-000, Brazil
| | - Andrea Pereira Rosa
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-000, Brazil
| | - Esteban Alberto Gonzalez
- Centro de Terapia Gênica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Camila Vieira Pinheiro
- Centro de Terapia Gênica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Fernanda Poletto
- Departamento de Química Orgânica, Instituto de Química, UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre, RS, 91501-970, Brazil
| | - Guilherme Baldo
- Centro de Terapia Gênica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, UFRGS, Rua Sarmento Leite, 500, Porto Alegre, RS, 90050-170, Brazil
| | - Carlos Severo Dutra-Filho
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Av. Ipiranga, 2752, Porto Alegre, RS, 90610-000, Brazil.
- Serviço de Genética Médica, HCPA, UFRGS, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-000, Brazil.
| |
Collapse
|
9
|
Potential Role of L-Carnitine in Autism Spectrum Disorder. J Clin Med 2021; 10:jcm10061202. [PMID: 33805796 PMCID: PMC8000371 DOI: 10.3390/jcm10061202] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/17/2022] Open
Abstract
L-carnitine plays an important role in the functioning of the central nervous system, and especially in the mitochondrial metabolism of fatty acids. Altered carnitine metabolism, abnormal fatty acid metabolism in patients with autism spectrum disorder (ASD) has been documented. ASD is a complex heterogeneous neurodevelopmental condition that is usually diagnosed in early childhood. Patients with ASD require careful classification as this heterogeneous clinical category may include patients with an intellectual disability or high functioning, epilepsy, language impairments, or associated Mendelian genetic conditions. L-carnitine participates in the long-chain oxidation of fatty acids in the brain, stimulates acetylcholine synthesis (donor of the acyl groups), stimulates expression of growth-associated protein-43, prevents cell apoptosis and neuron damage and stimulates neurotransmission. Determination of L-carnitine in serum/plasma and analysis of acylcarnitines in a dried blood spot may be useful in ASD diagnosis and treatment. Changes in the acylcarnitine profiles may indicate potential mitochondrial dysfunctions and abnormal fatty acid metabolism in ASD children. L-carnitine deficiency or deregulation of L-carnitine metabolism in ASD is accompanied by disturbances of other metabolic pathways, e.g., Krebs cycle, the activity of respiratory chain complexes, indicative of mitochondrial dysfunction. Supplementation of L-carnitine may be beneficial to alleviate behavioral and cognitive symptoms in ASD patients.
Collapse
|
10
|
Sun R, Man Z, Ji J, Ji S, Xu K, Pu Y, Yu L, Zhang J, Yin L, Pu Y. l-Carnitine protects against 1,4-benzoquinone-induced apoptosis and DNA damage by suppressing oxidative stress and promoting fatty acid oxidation in K562 cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:1033-1042. [PMID: 32478940 DOI: 10.1002/tox.22939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 04/05/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Widespread occupational and environmental exposure to benzene is unavoidable and poses a public health threat. Studies of potential interventions to prevent or relieve benzene toxicity are, thus, essential. Research has shown l-carnitine (LC) has beneficial effects against various pathological processes and diseases. LC possesses antioxidant activities and participates in fatty acid oxidation (FAO). In this study, we investigated whether 1,4-benzoquinone (1,4-BQ) affects LC levels and the FAO pathway, as well as analyzed the influence of LC on the cytotoxic effects of 1,4-BQ. We found that 1,4-BQ significantly decreased LC levels and downregulated Cpt1a, Cpt2, Crat, Hadha, Acaa2, and Acadvl mRNA expression in K562 cells. Subsequent assays confirmed that 1,4-BQ decreased cell viability and increased apoptosis and caspase-3, -8, and -9 activities. It also induced obvious oxidative stress and DNA damage, including an increase in the levels of reactive oxygen species and malondialdehyde, tail DNA%, and olive tail moment. Additionally, the mitochondrial membrane potential was significantly reduced. Cotreatment with LC (500 μmol/L) relieved these alterations by reducing oxidative stress and increasing the protein expression levels of Cpt1a and Hadha, particularly in the 20 μmol/L 1,4-BQ group. Thus, our results demonstrate that 1,4-BQ causes cytotoxicity, reduces LC levels, and downregulates the FAO genes. In contrast, LC exhibits protective effects against 1,4-BQ-induced apoptosis and DNA damage by decreasing oxidative stress and promoting the FAO pathway.
Collapse
Affiliation(s)
- Rongli Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Zhaodi Man
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Jiahui Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Shuangbin Ji
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Kai Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yunqiu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Linling Yu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Lihong Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Durazzo A, Lucarini M, Nazhand A, Souto SB, Silva AM, Severino P, Souto EB, Santini A. The Nutraceutical Value of Carnitine and Its Use in Dietary Supplements. Molecules 2020; 25:E2127. [PMID: 32370025 PMCID: PMC7249051 DOI: 10.3390/molecules25092127] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
Carnitine can be considered a conditionally essential nutrient for its importance in human physiology. This paper provides an updated picture of the main features of carnitine outlining its interest and possible use. Particular attention has been addressed to its beneficial properties, exploiting carnitine's properties and possible use by considering the main in vitro, in animal, and human studies. Moreover, the main aspects of carnitine-based dietary supplements have been indicated and defined with reference to their possible beneficial health properties.
Collapse
Affiliation(s)
- Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy;
| | - Amirhossein Nazhand
- Department of Biotechnology, Sari Agriculture Science and Natural Resource University, 9th km of Farah Abad Road, Sari 48181 68984, Mazandaran, Iran;
| | - Selma B. Souto
- Department of Endocrinology of Hospital São João, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
| | - Amélia M. Silva
- Department of Biology and Environment, University of Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, P-5001-801 Vila Real, Portugal;
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro (UTAD), P-5001-801 Vila Real, Portugal
| | - Patrícia Severino
- Industrial Biotechnology Program, University of Tiradentes (UNIT), Av. Murilo Dantas 300, Aracaju 49032-490, Brazil;
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
| | - Eliana B. Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via. D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
12
|
Wang G, Zhao L, Jiang Q, Sun Y, Zhao D, Sun M, He Z, Sun J, Wang Y. Intestinal OCTN2- and MCT1-targeted drug delivery to improve oral bioavailability. Asian J Pharm Sci 2020; 15:158-173. [PMID: 32256846 PMCID: PMC7118283 DOI: 10.1016/j.ajps.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 12/08/2019] [Accepted: 02/12/2020] [Indexed: 12/18/2022] Open
Abstract
Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs, thus providing high quality targets for the design of prodrugs or nanoparticles to facilitate oral drug delivery. In particular, intestinal carnitine/organic cation transporter 2 (OCTN2) and mono-carboxylate transporter protein 1 (MCT1) possess high transport capacities and complementary distributions. Therefore, we outline recent developments in transporter-targeted oral drug delivery with regard to the OCTN2 and MCT1 proteins in this review. First, basic information of the two transporters is reviewed, including their topological structures, characteristics and functions, expression and key features of their substrates. Furthermore, progress in transporter-targeting prodrugs and nanoparticles to increase oral drug delivery is discussed, including improvements in the oral absorption of anti-inflammatory drugs, antiepileptic drugs and anticancer drugs. Finally, the potential of a dual transporter-targeting strategy is discussed.
Collapse
Affiliation(s)
- Gang Wang
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Lichun Zhao
- Zhuang Yao Medicine Center of Engineering and Technology, Guang Xi University of Chinese Medicine, Nanning 530200, China.,School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| | - Qikun Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yixin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Wang
- School of Pharmacy, Guang Xi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
13
|
de Moraes MS, Guerreiro G, Sitta A, de Moura Coelho D, Manfredini V, Wajner M, Vargas CR. Oxidative damage in mitochondrial fatty acids oxidation disorders patients and the in vitro effect of l-carnitine on DNA damage induced by the accumulated metabolites. Arch Biochem Biophys 2019; 679:108206. [PMID: 31760122 DOI: 10.1016/j.abb.2019.108206] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The mitochondrial fatty acids oxidation disorders (FAOD) are inherited metabolic disorders (IMD) characterized by the accumulation of fatty acids of different sizes of chain according to the affected enzyme. METHODS This study evaluated the lipid peroxidation by the measurement of 8-isoprostanes, nitrosative stress parameters by the measurement of nitrite and nitrate content and DNA and RNA oxidative damage by the measurement of oxidized guanine species in urine samples from long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD), medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and multiple acyl-CoA dehydrogenase deficiency (MADD) patients. Also, we analyzed the in vitro DNA damage by comet assay induced by adipic acid, suberic acid, hexanoylglycine and suberylglycine, separated and in combination, as well as the effect of l-carnitine in human leukocytes. RESULTS An increase on 8-isoprostanes levels in all groups of patients was observed. The nitrite and nitrate levels were increased in LCHADD patients. DNA and RNA damage evaluation revealed increase on oxidized guanine species levels in LCHADD and MADD patients. The in vitro evaluation revealed an increase on the DNA damage induced by all metabolites, besides a potencialyzed effect. l-carnitine decreased the DNA damage induced by the metabolites. CONCLUSION These results demonstrate that toxic metabolites accumulated could be related to the increased oxidative and nitrosative stress of FAOD patients and that the metabolites, separated and in combination, cause DNA damage, which was reduced by l-carnitine, demonstrating antioxidant protection. GENERAL SIGNIFICANCE This work demonstrated oxidative stress in FAOD patients and the genotoxic potential of MCADD metabolites and the protective effect of l-carnitine.
Collapse
Affiliation(s)
- Maira Silmara de Moraes
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.
| | - Gilian Guerreiro
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil.
| | - Angela Sitta
- Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.
| | | | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, Universidade Federal do Pampa, Uruguaiana, RS, Brazil.
| | - Moacir Wajner
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil.
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, UFRGS, Porto Alegre, RS, Brazil; Serviço de Genética Médica, HCPA, UFRGS, Porto Alegre, RS, Brazil; Faculdade de Farmácia, UFRGS, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
14
|
Kelek SE, Afşar E, Akçay G, Danışman B, Aslan M. Effect of chronic L-carnitine supplementation on carnitine levels, oxidative stress and apoptotic markers in peripheral organs of adult Wistar rats. Food Chem Toxicol 2019; 134:110851. [PMID: 31568849 DOI: 10.1016/j.fct.2019.110851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022]
Abstract
This study investigated the effects of L-carnitine supplementation on carnitine levels, oxidative stress and apoptotic markers in the stomach, kidney, liver and testis tissues in adult rats. Rats were randomized to control and L-carnitine supplemented (LCAR) groups. Control group received distilled water for 7 months by intragastric gavage and the LCAR group was given 50 mg/kg/day L-carnitine via intragastric intubation for the same period. L-carnitine concentrations and caspase-3 activity were measured by fluorometric methods while cleaved caspase-3 was determined by Western blot analysis. Bcl-2 associated X protein (Bax) and B-cell lymphoma/leukemia-2 (Bcl-2) were quantified by enzyme immunoassay and Western blot analysis. Oxygen/nitrogen species (ROS/RNS) and total antioxidant capacity (TAC) were analyzed by colorimetric assay. Tissue L-carnitine concentrations were significantly increased in the LCAR group compared to controls. Anti-apoptotic Bcl-2 levels were significantly increased while pro-apoptotic Bax was significantly decreased in LCAR group rats compared to controls. Tissue caspase-3 was significantly alleviated in the LCAR group compared to controls. L-carnitine supplementation increased TAC and decreased ROS/RNS generation in the kidney, liver, stomach and testis tissues compared to controls. Obtained data suggests that L-carnitine supplementation can potentially be used to lessen both oxidative and apoptotic progression in peripheral organs.
Collapse
Affiliation(s)
- Sevim Ercan Kelek
- Vocational School of Health Services, Akdeniz University, Antalya, 07070, Turkey.
| | - Ebru Afşar
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, 07070, Turkey.
| | - Güven Akçay
- Department of Biophysics, Akdeniz University Medical School, Antalya, 07070, Turkey.
| | - Betül Danışman
- Department of Biophysics, Akdeniz University Medical School, Antalya, 07070, Turkey.
| | - Mutay Aslan
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, 07070, Turkey.
| |
Collapse
|
15
|
Kumru B, Oztürk Hismi B. Investigation of L - Carnitine Concentrations in Treated Patients with Maple Syrup Urine Disease. J Pediatr Genet 2019; 8:133-136. [PMID: 31406618 DOI: 10.1055/s-0039-1691789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/16/2019] [Indexed: 01/01/2023]
Abstract
Maple syrup urine disease (MSUD), also known as branched-chain α ketoaciduria, is a metabolic disorder caused by an inborn deficiency in the activity of the branched-chain α-ketoacid dehydrogenase complex. Severe neurological damage occurs in most patients with MSUD although the exact mechanism of neurotoxicity still remains unknown. Studies have suggested that neuropathology in patients with MSUD may be related to oxidative stress. L - carnitine mediates the transport of fatty acids into the mitochondria that are required for β-oxidation and ATP production. Along with the important roles it plays in lipid metabolism, L-carnitine also protects tissues from oxidative damage through its antioxidant properties. The study included a total of 15 patients with MSUD who attended regular follow-up visits, and 15 age-matched healthy control subjects, and aimed to investigate L - carnitine levels in treated patients with MSUD and healthy control subjects. L - carnitine levels were found to be significantly lower in the patient group than in the healthy controls. No significant correlation was identified between the plasma branched-chain amino acids leucine, isoleucine, valine, and L - carnitine levels. Patients with MSUD can be treated with adjuvant therapy with L - carnitine supplementation.
Collapse
Affiliation(s)
- Burcu Kumru
- Division of Nutrition and Diet, Gaziantep Cengiz Gökçek Maternity and Children's Hospital, Gaziantep, Turkey
| | - Burcu Oztürk Hismi
- Division of Pediatric Metabolism and Nutrition, Tepecik Training and Research Hospital, Izmir, Turkey
| |
Collapse
|
16
|
Hauschild TC, Guerreiro G, Mescka CP, Coelho DM, Steffens L, Moura DJ, Manfredini V, Vargas CR. DNA damage induced by alloisoleucine and other metabolites in maple syrup urine disease and protective effect of l-carnitine. Toxicol In Vitro 2019; 57:194-202. [PMID: 30853490 DOI: 10.1016/j.tiv.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited deficiency of the branched-chain α-keto dehydrogenase complex, characterized by accumulation of the branched-chain amino acids (BCAAs) and their respective branched chain α-keto-acids (BCKAs), as well as by the presence of alloisoleucine (Allo). Studies have shown that oxidative stress is involved in the pathophysiology of MSUD. In this work, we investigated using the comet assay whether Allo, BCAAs and BCKAs could induce in vitro DNA damage, as well as the influence of l-Carnitine (L-Car) upon DNA damage. We also evaluated urinary 8-hydroxydeoguanosine (8-OHdG) levels, an oxidative DNA damage biomarker, in MSUD patients submitted to a restricted diet supplemented or not with L-Car. All tested concentrations of metabolites (separated or incubated together) induced in vitro DNA damage, and the co-treatment with L-Car reduced these effects. We found that Allo induced the higher DNA damage class and verified a potentiation of DNA damage induced by synergistic action between metabolites. In vivo, it was observed a significant increase in 8-OHdG levels, which was reversed by L-Car. We demonstrated for the first time that oxidative DNA damage is induced not only by BCAAs and BCKAs but also by Allo and we reinforce the protective effect of L-Car.
Collapse
Affiliation(s)
- Tatiane Cristina Hauschild
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| | - Gilian Guerreiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Caroline Paula Mescka
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil
| | - Daniella Moura Coelho
- Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil
| | - Luiza Steffens
- Laboratório de Genética Toxicológica, UFCSPA, R. Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Dinara Jaqueline Moura
- Laboratório de Genética Toxicológica, UFCSPA, R. Sarmento Leite, 245, CEP 90050-170 Porto Alegre, RS, Brazil
| | - Vanusa Manfredini
- Programa de Pós-Graduação em Bioquímica, BR 472, Km 585, 118, Universidade Federal do Pampa, CEP 97500-970 Uruguaiana, RS, Brazil
| | - Carmen Regla Vargas
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, UFRGS, Av. Ipiranga, 2752, CEP 90610-000 Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, R. Ramiro Barcelos, 2600, CEP 90035-003 Porto Alegre, RS, Brazil; Serviço de Genéstica Médica, HCPA, R. Ramiro Barcelos, 2350, CEP 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
17
|
Scaini G, Tonon T, Moura de Souza CF, Schuck PF, Ferreira GC, Quevedo J, Neto JS, Amorim T, Camelo JS, Margutti AVB, Hencke Tresbach R, Sperb-Ludwig F, Boy R, de Medeiros PFV, Schwartz IVD, Streck EL. Evaluation of plasma biomarkers of inflammation in patients with maple syrup urine disease. J Inherit Metab Dis 2018; 41:10.1007/s10545-018-0188-x. [PMID: 29740775 DOI: 10.1007/s10545-018-0188-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited disorder that affects branched-chain amino acid (BCAA) catabolism and is associated with acute and chronic brain dysfunction. Recent studies have shown that inflammation may be involved in the neuropathology of MSUD. However, these studies have mainly focused on single or small subsets of proteins or molecules. Here we performed a case-control study, including 12 treated-MSUD patients, in order to investigate the plasmatic biomarkers of inflammation, to help to establish a possible relationship between these biomarkers and the disease. Our results showed that MSUD patients in treatment with restricted protein diets have high levels of pro-inflammatory cytokines [IFN-γ, TNF-α, IL-1β and IL-6] and cell adhesion molecules [sICAM-1 and sVCAM-1] compared to the control group. However, no significant alterations were found in the levels of IL-2, IL-4, IL-5, IL-7, IL-8, and IL-10 between healthy controls and MSUD patients. Moreover, we found a positive correlation between number of metabolic crisis and IL-1β levels and sICAM-1 in MSUD patients. In conclusion, our findings in plasma of patients with MSUD suggest that inflammation may play an important role in the pathogenesis of MSUD, although this process is not directly associated with BCAA blood levels. Overall, data reported here are consistent with the working hypothesis that inflammation may be involved in the pathophysiological mechanism underlying the brain damage observed in MSUD patients.
Collapse
Affiliation(s)
- Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | - Tássia Tonon
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post Graduation Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Patricia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | | | - Tatiana Amorim
- Associação de Pais e Amigos dos Excepcionais (APAE), Salvador, Brazil
| | - Jose S Camelo
- Pediatrics Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Raquel Boy
- Pediatrics Department, Hospital Universitário Pedro Ernesto, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula F V de Medeiros
- Unidade Acadêmica de Medicina, Hospital Universitário Alcides Carneiro, Universidade Federal de Campina Grande, Campina Grande, Brazil
| | - Ida Vanessa D Schwartz
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Emilio Luiz Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
18
|
Leucine reduces the proliferation of MC3T3-E1 cells through DNA damage and cell senescence. Toxicol In Vitro 2017; 48:1-10. [PMID: 29278758 DOI: 10.1016/j.tiv.2017.12.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
Leucine (Leu) is an essential branched-chain amino acid, present in dairy products, which has been investigated for its important role in cell signaling. The effects of Leu on several kinds of cells have been studied, altough little is known on its action upon bone cells and cell proliferation. Thus, the aim of this study is to investigate the effects of Leu supplementation on the proliferation of pre-osteoblasts from MC3T3-E1 lineage. MC3T3-E1 cells were kept in Alpha medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimitotic. Cells were treated during 48h by adding 50μM of Leu, which corresponds to a 12.5% increase of the amino acid in the culture medium. The evaluation of viability and proliferation of cultured cells was performed using Trypan Blue dye. In order to identify the mechanisms related to the decreased cellular proliferation, assays were performed to assess cytotoxicity, apotosis, oxidative stress, inflammation, autophagy, senescence and DNA damage. Results showed that Leu supplementation decreased cell proliferation by 40% through mechanisms not related to cell necrosis, apoptosis, oxidative stress, autophagy or inhibition of the mTORC1 pathway. On the other hand, Leu supplementation caused DNA damage. In conclusion, Leu caused a negative impact on bone cell proliferation by inducing cell senescence through DNA damage.
Collapse
|
19
|
Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 2017; 134:208-217. [PMID: 29128308 DOI: 10.1016/j.neuropharm.2017.11.011] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/02/2017] [Accepted: 11/05/2017] [Indexed: 12/12/2022]
Abstract
The past two decades have witnessed remarkable advances in oxidative stress research, particularly in the context of ischemic brain injury. Oxidative stress in ischemic tissues compromises the integrity of the genome, resulting in DNA lesions, cell death in neurons, glial cells, and vascular cells, and impairments in neurological recovery after stroke. As DNA is particularly vulnerable to oxidative attack, cells have evolved the ability to induce multiple DNA repair mechanisms, including base excision repair (BER), nucleotide excision repair (NER) and non-homogenous endpoint jointing (NHEJ). Defective DNA repair is tightly correlated with worse neurological outcomes after stroke, whereas upregulation of DNA repair enzymes, such as APE1, OGG1, and XRCC1, improves long-term functional recovery following stroke. Indeed, DNA damage and repair are now known to play critical roles in fundamental aspects of stroke recovery, such as neurogenesis, white matter recovery, and neurovascular unit remodeling. Several DNA repair enzymes are essential for comprehensive neural repair mechanisms after stroke, including Polβ and NEIL3 for neurogenesis, APE1 for white matter repair, Gadd45b for axonal regeneration, and DNA-PKs for neurovascular remodeling. This review discusses the emerging role of DNA damage and repair in functional recovery after stroke and highlights the contribution of DNA repair to regenerative elements after stroke. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
|
20
|
Taschetto L, Scaini G, Zapelini HG, Ramos ÂC, Strapazzon G, Andrade VM, Réus GZ, Michels M, Dal-Pizzol F, Quevedo J, Schuck PF, Ferreira GC, Streck EL. Acute and long-term effects of intracerebroventricular administration of α-ketoisocaproic acid on oxidative stress parameters and cognitive and noncognitive behaviors. Metab Brain Dis 2017; 32:1507-1518. [PMID: 28550500 DOI: 10.1007/s11011-017-0035-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/16/2017] [Indexed: 01/07/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is biochemically characterized by elevated levels of leucine, isoleucine and valine, as well as their corresponding transaminated branched-chain α-keto acids in tissue and biological fluids. Neurological symptoms and cerebral abnormalities, whose mechanisms are still unknown, are typical of this metabolic disorder. In the present study, we evaluated the early effects (1 h after injection) and long-term effects (15 days after injection) of a single intracerebroventricular administration of α-ketoisocaproic acid (KIC) on oxidative stress parameters and cognitive and noncognitive behaviors. Our results showed that KIC induced early and long-term effects; we found an increase in TBARS levels, protein carbonyl content and DNA damage in the hippocampus, striatum and cerebral cortex both one hour and 15 days after KIC administration. Moreover, SOD activity increased in the hippocampus and striatum one hour after injection, whereas after 15 days, SOD activity decreased only in the striatum. On the other hand, KIC significantly decreased CAT activity in the striatum one hour after injection, but 15 days after KIC administration, we found a decrease in CAT activity in the hippocampus and striatum. Finally, we showed that long-term cognitive deficits follow the oxidative damage; KIC induced impaired habituation memory and long-term memory impairment. From the biochemical and behavioral findings, it we presume that KIC provokes oxidative damage, and the persistence of brain oxidative stress is associated with long-term memory impairment and prepulse inhibition.
Collapse
Affiliation(s)
- Luciane Taschetto
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
| | - Hugo G Zapelini
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Ândrea C Ramos
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Giulia Strapazzon
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Vanessa M Andrade
- Laboratório de Biologia Celular e Molecular, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Monique Michels
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Dal-Pizzol
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Quevedo
- Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Biofísica Carlos Chagas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética e Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
| |
Collapse
|
21
|
Rodrigues DGB, de Moura Coelho D, Sitta Â, Jacques CED, Hauschild T, Manfredini V, Bakkali A, Struys EA, Jakobs C, Wajner M, Vargas CR. Experimental evidence of oxidative stress in patients with l-2-hydroxyglutaric aciduria and that l-carnitine attenuates in vitro DNA damage caused by d-2-hydroxyglutaric and l-2-hydroxyglutaric acids. Toxicol In Vitro 2017; 42:47-53. [DOI: 10.1016/j.tiv.2017.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 11/29/2022]
|
22
|
Vilela TC, Scaini G, Furlanetto CB, Pasquali MAB, Santos JPA, Gelain DP, Moreira JCF, Schuck PF, Ferreira GC, Streck EL. Apoptotic signaling pathways induced by acute administration of branched-chain amino acids in an animal model of maple syrup urine disease. Metab Brain Dis 2017; 32:115-122. [PMID: 27510712 DOI: 10.1007/s11011-016-9892-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/04/2016] [Indexed: 11/26/2022]
Abstract
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of the branched-chain α-keto acid dehydrogenase complex activity. This blockage leads to accumulation of the branched-chain amino acids leucine, isoleucine and valine, as well as their corresponding α-keto acids and α-hydroxy acids. The affected patients present severe neurological symptoms, such as coma and seizures, as well as edema and cerebral atrophy. Considering that the mechanisms of the neurological symptoms presented by MSUD patients are still poorly understood, in this study, protein levels of apoptotic factors are measured, such as Bcl-2, Bcl-xL, Bax, caspase-3 and -8 in hippocampus and cerebral cortex of rats submitted to acute administration of branched-chain amino acids during their development. The results in this study demonstrated that BCAA acute exposure during the early postnatal period did not significantly change Bcl-2, Bcl-xL, Bax and caspase-8 protein levels. However, the Bax/Bcl-2 ratio and procaspase-3 protein levels were decreased in hippocampus. On the other hand, acute administration of BCAA in 30-day-old rats increase in Bax/Bcl-2 ratio followed by an increased caspase-3 activity in cerebral cortex, whereas BCAA induces apoptosis in hippocampus through activation and cleavage of caspase-3 and -8 without changing the Bax/Bcl-2 ratio. In conclusion, the results suggest that apoptosis could be of pivotal importance in the developmental neurotoxic effects of BCAA. In addition, the current studies also suggest that multiple mechanisms may be involved in BCAA-induced apoptosis in the cerebral cortex and hippocampus.
Collapse
Affiliation(s)
- Thais C Vilela
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Giselli Scaini
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Camila B Furlanetto
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil
| | - Matheus A B Pasquali
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - João Paulo A Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel P Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Cláudio F Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia F Schuck
- Laboratório de Erros Inatos do Metabolismo, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo C Ferreira
- Laboratório de Neuroquímica, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio L Streck
- Laboratório de Bioenergética, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, 88806-000, SC, Brazil.
- Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), Porto Alegre, RS, Brazil.
- Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
23
|
Zubarioglu T, Kiykim E, Cansever MS, Neselioglu S, Aktuglu-Zeybek C, Erel O. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment. Metab Brain Dis 2017; 32:179-184. [PMID: 27535382 DOI: 10.1007/s11011-016-9898-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
Abstract
Maple syrup urine disease (MSUD) is a metabolic disorder that is caused by deficiency of branched-chain α-keto acid dehydrogenase complex. Although accumulation of toxic metabolites is associated with neurotoxicity, mechanisms underlying brain damage remain unclear. Aim of this study is to evaluate thiol/disulphide homeostasis as a novel indicator of oxidative stress in MSUD patients under treatment. Twenty patients with MSUD and 20 healthy individuals were included in study. All patients were under regular follow-up and had a good metabolic control. Serum native thiol (-SH), total thiol (-SH + -S-S-), disulphide (-S-S) levels were measured in all subjects. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. Simultaneous blood sampling for plasma quantitative amino acid analysis was performed in both groups. Any significant difference was not observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition no increase of disulphide/native thiol and disulphide/total thiol ratios was detected in patient group. This study is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in MSUD patients. Among previous studies that were made to determine oxidative stress in treated MSUD patients, this study had the largest sample size also. In recent studies, it was claimed that oxidative stress could be responsible from neurotoxicity even in treated patients. Here, dynamic thiol/disulfide homeostasis status showed that providing good metabolic control in MSUD patients prevent oxidative stress. Under regular follow-up and good compliance with diet, additional antioxidant therapies would possibly not be necessary.
Collapse
Affiliation(s)
- Tanyel Zubarioglu
- Cerrahpasa Medical Faculty Department of Pediatric Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey.
| | - Ertugrul Kiykim
- Cerrahpasa Medical Faculty Department of Pediatric Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey
| | - Mehmet Serif Cansever
- Cerrahpasa Medical Faculty Central Laboratory, Istanbul University, Istanbul, Turkey
| | - Salim Neselioglu
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| | - Cigdem Aktuglu-Zeybek
- Cerrahpasa Medical Faculty Department of Pediatric Division of Nutrition and Metabolism, Istanbul University, Kocamustafapasa Fatih, 34098, Istanbul, Turkey
| | - Ozcan Erel
- Department of Clinical Biochemistry, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
24
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
25
|
Villani GRD, Gallo G, Scolamiero E, Salvatore F, Ruoppolo M. “Classical organic acidurias”: diagnosis and pathogenesis. Clin Exp Med 2016; 17:305-323. [DOI: 10.1007/s10238-016-0435-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
26
|
Chronic Oral L-Carnitine Supplementation Drives Marked Plasma TMAO Elevations in Patients with Organic Acidemias Despite Dietary Meat Restrictions. JIMD Rep 2016; 30:39-44. [PMID: 26936850 DOI: 10.1007/8904_2016_539] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/24/2022] Open
Abstract
Recent studies have implicated trimethylamine N-oxide (TMAO) in atherosclerosis, raising concern about L-carnitine, a common supplement for patients with inborn errors of metabolism (IEMs) and a TMAO precursor metabolized, in part, by intestinal microbes. Dietary meat restriction attenuates carnitine-to-TMAO conversion, suggesting that TMAO production may not occur in meat-restricted individuals taking supplemental L-carnitine, but this has not been tested. Here, we mine a metabolomic dataset to assess TMAO levels in patients with diverse IEMs, including organic acidemias. These data were correlated with clinical information and confirmed using a quantitative TMAO assay. Marked plasma TMAO elevations were detected in patients treated with supplemental L-carnitine, including those on a meat-free diet. On average, patients with an organic acidemia had ~45-fold elevated [TMAO], as compared to the reference population. This effect was mitigated by metronidazole therapy lasting 7 days each month. Collectively, our data show that TMAO production occurs at high levels in patients with IEMs receiving oral L-carnitine. Further studies are needed to determine the long-term safety and efficacy of chronic oral L-carnitine supplementation and whether suppression or circumvention of intestinal bacteria may improve L-carnitine therapy.
Collapse
|