1
|
Pérez-Martínez DE, Bermúdez-Hernández GA, Madrazo-Moya CF, Cancino-Muñoz I, Montero H, Licona-Cassani C, Muñiz-Salazar R, Comas I, Zenteno-Cuevas R. SNPs in Genes Related to DNA Damage Repair in Mycobacterium Tuberculosis: Their Association with Type 2 Diabetes Mellitus and Drug Resistance. Genes (Basel) 2022; 13:genes13040609. [PMID: 35456415 PMCID: PMC9029044 DOI: 10.3390/genes13040609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Genes related to DNA damage repair in Mycobacterium tuberculosis are critical for survival and genomic diversification. The aim of this study is to compare the presence of SNPs in genes related to DNA damage repair in sensitive and drug-resistant M. tuberculosis genomes isolated from patients with and without type 2 diabetes mellitus (T2DM). We collected 399 M. tuberculosis L4 genomes from several public repositories; 224 genomes belonging to hosts without T2DM, of which 123 (54.9%) had drug sensitive tuberculosis (TB) and 101 (45.1%) had drug resistance (DR)-TB; and 175 genomes from individuals with T2DM, of which 100 (57.1%) had drug sensitive TB and 75 (42.9%) had DR-TB. The presence of SNPs in the coding regions of 65 genes related to DNA damage repair was analyzed and compared with the resistance profile and the presence/absence of T2DM in the host. The results show the phylogenetic relationships of some SNPS and L4 sub-lineages, as well as differences in the distribution of SNPs present in DNA damage repair-related genes related to the resistance profile of the infecting strain and the presence of T2DM in the host. Given these differences, it was possible to generate two discriminant functions to distinguish between drug sensitive and drug resistant genomes, as well as patients with or without T2DM.
Collapse
Affiliation(s)
- Damián E. Pérez-Martínez
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Gustavo A. Bermúdez-Hernández
- Programa de Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Av. Luis, Dr. Castelazo Ayala s/n, Col. Industrial Animas, Xalapa 91190, Mexico; (D.E.P.-M.); (G.A.B.-H.)
| | - Carlos F. Madrazo-Moya
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
| | - Irving Cancino-Muñoz
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Hilda Montero
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
| | - Cuauhtemoc Licona-Cassani
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Division of Integrative Biology, The Institute for Obesity Research, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Raquel Muñiz-Salazar
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Laboratorio de Epidemiología y Ecología Molecular, Escuela de Ciencias de la Salud, Universidad Autónoma de Baja California, Ensenada 22890, Mexico
| | - Iñaki Comas
- Biomedical Institute of Valencia IBV-CSIC, C. de Jaume Roig, 11, 46010 Valencia, Spain; (C.F.M.-M.); (I.C.-M.); (I.C.)
- CIBER of Epidemiology and Public Health, 08908 Madrid, Spain
| | - Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa 91190, Mexico;
- Red Multidisciplinaria de Investigación en Tuberculosis, Mexico City 14080, Mexico;
- Correspondence:
| |
Collapse
|
2
|
|
3
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
4
|
A multilayered repair system protects the mycobacterial chromosome from endogenous and antibiotic-induced oxidative damage. Proc Natl Acad Sci U S A 2020; 117:19517-19527. [PMID: 32727901 DOI: 10.1073/pnas.2006792117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Oxidative damage to DNA is a threat to the genomic integrity and coding accuracy of the chromosomes of all living organisms. Guanine is particularly susceptible to oxidation, and 8-oxo-dG (OG), when produced in situ or incorporated by DNA polymerases, is highly mutagenic due to mispairing with adenine. In many bacteria, defense against OG depends on MutT enzymes, which sanitize OG in the nucleotide pool, and the MutM/Y system, which counteracts OG in chromosomal DNA. In Escherichia coli, antibiotic lethality has been linked to oxidative stress and the downstream consequences of OG processing. However, in mycobacteria, the role of these systems in genomic integrity and antibiotic lethality is not understood, in part because mycobacteria encode four MutT enzymes and two MutMs, suggesting substantial redundancy. Here, we definitively probe the role of OG handling systems in mycobacteria. We find that, although MutT4 is the only MutT enzyme required for resistance to oxidative stress, this effect is not due to OG processing. We find that the dominant system that defends against OG-mediated mutagenesis is MutY/MutM1, and this system is dedicated to in situ chromosomal oxidation rather than correcting OG incorporated by accessory polymerases (DinB1/DinB2/DinB3/DnaE2). In addition, we uncover that mycobacteria resist antibiotic lethality through nucleotide sanitization by MutTs, and in the absence of this system, accessory DNA polymerases and MutY/M contribute to antibiotic-induced lethality. These results reveal a complex, multitiered system of OG handling in mycobacteria with roles in oxidative stress resistance, mutagenesis, and antibiotic lethality.
Collapse
|
5
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
6
|
Fernández-Silva FS, Schulz ML, Alves IR, Freitas RR, da Rocha RP, Lopes-Kulishev CO, Medeiros MHG, Galhardo RS. Contribution of GO System Glycosylases to Mutation Prevention in Caulobacter crescentus. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:246-255. [PMID: 31569269 DOI: 10.1002/em.22335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/29/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
8-oxo-7,8-dihydroguanine, commonly referred to as 8-oxoG, is considered one of the most predominant oxidative lesions formed in DNA. Due to its ability to pair with adenines in its syn configuration, this lesion has a strong mutagenic potential in both eukaryotes and prokaryotes. Escherichia coli cells are endowed with the GO system, which protects them from the mutagenic properties of this lesion when formed both in cellular DNA and the nucleotide pool. MutY and MutM (Fpg) DNA glycosylases are crucial components of the GO system. A strong mutator phenotype of the Escherichia coli mutM mutY double mutant underscores the importance of 8-oxoG repair for genomic stability. Here, we report that in Caulobacter crescentus, a widely studied alpha-proteobacterium with a GC-rich genome, the combined lack of MutM and MutY glycosylases produces a more modest mutator phenotype when compared to E. coli. Genetic analysis indicates that other glycosylases and other repair pathways do not act synergistically with the GO system for spontaneous mutation prevention. We also show that there is not a statistically significant difference in the spontaneous levels 8-oxodGuo in E. coli and C. crescentus, suggesting that other yet to be identified differences in repair or replication probably account for the differential importance of the GO system between these two species. Environ. Mol. Mutagen. 61:246-255, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Frank S Fernández-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariane L Schulz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Ingrid Reale Alves
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rubia R Freitas
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Raquel Paes da Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carina O Lopes-Kulishev
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marisa H G Medeiros
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
8
|
Martins-Pinheiro M, Oliveira AR, Valencia AO, Fernandez-Silva FS, Silva LG, Lopes-Kulishev CO, Italiani VCS, Marques MV, Menck CF, Galhardo RS. Molecular characterization of Caulobacter crescentus mutator strains. Gene 2017; 626:251-257. [PMID: 28533123 DOI: 10.1016/j.gene.2017.05.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/31/2017] [Accepted: 05/18/2017] [Indexed: 10/25/2022]
Abstract
Mutator strains were identified by screening random Tn5 insertion clones of Caulobacter crescentus. We identified clones with robust increases in mutation rates with Tn5 insertions in the mutY, mutS, mutL and uvrD genes, known to act in mutation-preventing pathways in Escherichia coli. Analysis of mutations in the rpoB gene revealed that in both the parental strain and mismatch repair-deficient mutants, A:T→G:C transitions predominate by a large margin over C:G→T:A. We have also investigated the role of the error-prone polymerase encoded by imuC (dnaE2) in spontaneous mutagenesis, and found that a imuC mutant strain shows mutation rates and sequences comparable to the parental strain. Our study characterizes for the first time mutator strains in a member of the alphaproteobacteria group. In spite of the limitations of using a single marker, possible reasons for the observed mutational bias are discussed in the light of the repertoire of DNA repair genes in this bacterium.
Collapse
Affiliation(s)
- Marinalva Martins-Pinheiro
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alice R Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Alexy O Valencia
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Frank S Fernandez-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Larissa G Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carina O Lopes-Kulishev
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Valeria C S Italiani
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marilis V Marques
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos F Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Rodrigo S Galhardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|