1
|
Łazowski K, Woodgate R, Fijalkowska IJ. Escherichia coli DNA replication: the old model organism still holds many surprises. FEMS Microbiol Rev 2024; 48:fuae018. [PMID: 38982189 PMCID: PMC11253446 DOI: 10.1093/femsre/fuae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/11/2024] Open
Abstract
Research on Escherichia coli DNA replication paved the groundwork for many breakthrough discoveries with important implications for our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors influencing replication fidelity might be important for studies on the emergence of antibiotic resistance. Importantly, the wide access to high-resolution single-molecule and live-cell imaging, whole genome sequencing, and cryo-electron microscopy techniques, which were greatly popularized in the last decade, allows us to revisit certain assumptions about the replisomes and offers very detailed insight into how they work. For many parts of the replisome, step-by-step mechanisms have been reconstituted, and some new players identified. This review summarizes the latest developments in the area, focusing on (a) the structure of the replisome and mechanisms of action of its components, (b) organization of replisome transactions and repair, (c) replisome dynamics, and (d) factors influencing the base and sugar fidelity of DNA synthesis.
Collapse
Affiliation(s)
- Krystian Łazowski
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, United States
| | - Iwona J Fijalkowska
- Laboratory of DNA Replication and Genome Stability, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
2
|
Kapoor I, Varshney U. Diverse roles of nucleoside diphosphate kinase in genome stability and growth fitness. Curr Genet 2020; 66:671-682. [PMID: 32249353 DOI: 10.1007/s00294-020-01073-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023]
Abstract
Nucleoside diphosphate kinase (NDK), a ubiquitous enzyme, catalyses reversible transfer of the γ phosphate from nucleoside triphosphates to nucleoside diphosphates and functions to maintain the pools of ribonucleotides and deoxyribonucleotides in the cell. As even a minor imbalance in the nucleotide pools can be mutagenic, NDK plays an antimutator role in maintaining genome integrity. However, the mechanism of the antimutator roles of NDK is not completely understood. In addition, NDKs play important roles in the host-pathogen interactions, metastasis, gene regulation, and various cellular metabolic processes. To add to these diverse roles of NDK in cells, a recent study now reveals that NDK may even confer mutator phenotypes to the cell by acting on the damaged deoxyribonucleoside diphosphates that may be formed during the oxidative stress. In this review, we discuss the roles of NDK in homeostasis of the nucleotide pools and genome integrity, and its possible implications in conferring growth/survival fitness to the organisms in the changing environmental niches.
Collapse
Affiliation(s)
- Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India. .,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
| |
Collapse
|
3
|
The Antibiotic Trimethoprim Displays Strong Mutagenic Synergy with 2-Aminopurine. Antimicrob Agents Chemother 2019; 63:AAC.01577-18. [PMID: 30509944 DOI: 10.1128/aac.01577-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
We show that trimethoprim (TMP), an antibiotic in current use, displays a strong synergistic effect on mutagenesis in Escherichia coli when paired with the base analog 2-aminopurine (2AP), resulting in a 35-fold increase in mutation frequencies in the rpoB-Rifr system. Combination therapies are often employed both as antibiotic treatments and in cancer chemotherapy. However, mutagenic effects of these combinations are rarely examined. An analysis of the mutational spectra of TMP, 2AP, and their combination indicates that together they trigger a response via an alteration in deoxynucleoside triphosphate (dNTP) ratios that neither compound alone can trigger. A similar, although less strong, response is seen with the frameshift mutagen ICR191 and 2AP. These results underscore the need for testing the effects on mutagenesis of combinations of antibiotics and chemotherapeutics.
Collapse
|
4
|
Zhao Q, Yang W, Qin T, Huang Z. Moonlighting Phosphatase Activity of Klenow DNA Polymerase in the Presence of RNA. Biochemistry 2018; 57:5127-5135. [PMID: 30059615 DOI: 10.1021/acs.biochem.8b00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNA is a key player in the cellular central dogma, including RNA transcription and protein synthesis. However, it is unknown whether RNA can directly interfere with DNA synthesis. Recently, we have found in vitro that while binding to DNA polymerase nonspecifically, RNA can transform DNA polymerase to display a moonlighting activity, dNTP phosphatase, in turn interfering with DNA synthesis. This phosphatase activity removes the γ-phosphate from dNTPs (generating dNDPs) and subsequently removes the β-phosphate from the formed dNDPs (generating dNMPs), confirmed by the noncleavable α,β-CH2-dGTP and β,γ-CH2-dGTP analogues. We also found that dGTP is the best substrate for the phosphatase, and the dNTP phosphatase activity is sensitive to the reaction medium. In addition, we have revealed that RNA can tune the activity of closely related proteins and give rise to new catalytic functions with subtle differences. Moreover, we have demonstrated in vitro that at the lower dNTP level, this phosphatase can directly inhibit DNA synthesis by dNTP depletion, though the phosphatase activity is 690-fold slower than the polymerase activity. Our observation in vitro suggests a plausible strategy for RNA to directly interfere with DNA polymerase and DNA synthesis in vivo.
Collapse
Affiliation(s)
- Qianwei Zhao
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Wen Yang
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Tong Qin
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Zhen Huang
- College of Life Sciences , Sichuan University , Chengdu , China.,Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| |
Collapse
|
5
|
Pezo V, Hassan C, Louis D, Sargueil B, Herdewijn P, Marlière P. Metabolic Recruitment and Directed Evolution of Nucleoside Triphosphate Uptake in Escherichia coli. ACS Synth Biol 2018; 7:1565-1572. [PMID: 29746092 DOI: 10.1021/acssynbio.8b00048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the design and elaboration of a selection protocol for importing a canonical substrate of DNA polymerase, thymidine triphosphate (dTTP) in Escherichia coli. Bacterial strains whose growth depend on dTTP uptake, through the action of an algal plastid transporter expressed from a synthetic gene inserted in the chromosome, were constructed and shown to withstand the simultaneous loss of thymidylate synthase and thymidine kinase. Such thyA tdk dual deletant strains provide an experimental model of tight nutritional containment for preventing dissemination of microbial GMOs. Our strains transported the four canonical dNTPs, in the following order of preference: dCTP > dATP ≥ dGTP > dTTP. Prolonged cultivation under limitation of exogenous dTTP led to the enhancement of dNTP transport by adaptive evolution. We investigated the uptake of dCTP analogues with altered sugar or nucleobase moieties, which were found to cause a loss of cell viability and an increase of mutant frequency, respectively. E. coli strains equipped with nucleoside triphosphate transporters should be instrumental for evolving organisms whose DNA genome is morphed chemically by fully substituting its canonical nucleotide components.
Collapse
Affiliation(s)
- Valérie Pezo
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | | | | | - Bruno Sargueil
- CNRS UMR 8015, Laboratoire de Cristallographie et RMN Biologiques, Université Paris Descartes, 4 avenue de l’Observatoire, 75006 Paris, France
| | - Piet Herdewijn
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
| | - Philippe Marlière
- ISSB, Génopole, 5 rue Henri Desbruères, 91000 Evry, France
- TESSSI, 81 rue Réaumur, 75002 Paris, France
| |
Collapse
|
6
|
Miller JH. Mutagenesis: Interactions with a parallel universe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:78-81. [PMID: 29807579 DOI: 10.1016/j.mrrev.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular, Biology Institute, and The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Kochenova OV, Bezalel-Buch R, Tran P, Makarova AV, Chabes A, Burgers PMJ, Shcherbakova PV. Yeast DNA polymerase ζ maintains consistent activity and mutagenicity across a wide range of physiological dNTP concentrations. Nucleic Acids Res 2017; 45:1200-1218. [PMID: 28180291 PMCID: PMC5388397 DOI: 10.1093/nar/gkw1149] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 11/12/2022] Open
Abstract
In yeast, dNTP pools expand drastically during DNA damage response. We show that similar dNTP elevation occurs in strains, in which intrinsic replisome defects promote the participation of error-prone DNA polymerase ζ (Polζ) in replication of undamaged DNA. To understand the significance of dNTP pools increase for Polζ function, we studied the activity and fidelity of four-subunit Polζ (Polζ4) and Polζ4-Rev1 (Polζ5) complexes in vitro at ‘normal S-phase’ and ‘damage-response’ dNTP concentrations. The presence of Rev1 inhibited the activity of Polζ and greatly increased the rate of all three ‘X-dCTP’ mispairs, which Polζ4 alone made extremely inefficiently. Both Polζ4 and Polζ5 were most promiscuous at G nucleotides and frequently generated multiple closely spaced sequence changes. Surprisingly, the shift from ‘S-phase’ to ‘damage-response’ dNTP levels only minimally affected the activity, fidelity and error specificity of Polζ complexes. Moreover, Polζ-dependent mutagenesis triggered by replisome defects or UV irradiation in vivo was not decreased when dNTP synthesis was suppressed by hydroxyurea, indicating that Polζ function does not require high dNTP levels. The results support a model wherein dNTP elevation is needed to facilitate non-mutagenic tolerance pathways, while Polζ synthesis represents a unique mechanism of rescuing stalled replication when dNTP supply is low.
Collapse
Affiliation(s)
- Olga V Kochenova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Rachel Bezalel-Buch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Phong Tran
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Alena V Makarova
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Peter M J Burgers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA
| | - Polina V Shcherbakova
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
8
|
Standley M, Allen J, Cervantes L, Lilly J, Camps M. Fluorescence-Based Reporters for Detection of Mutagenesis in E. coli. Methods Enzymol 2017. [PMID: 28645368 DOI: 10.1016/bs.mie.2017.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mutagenesis in model organisms following exposure to chemicals is used as an indicator of genotoxicity. Mutagenesis assays are also used to study mechanisms of DNA homeostasis. This chapter focuses on detection of mutagenesis in prokaryotes, which boils down to two approaches: reporter inactivation (forward mutation assay) and reversion of an inactivating mutation (reversion mutation assay). Both methods are labor intensive, involving visual screening, quantification of colonies on solid media, or determining a Poisson distribution in liquid culture. Here, we present two reversion reporters for in vivo mutagenesis that produce a quantitative output, and thus have the potential to greatly reduce the amount of test chemical and labor involved in these assays. This output is obtained by coupling a TEM β lactamase-based reversion assay with GFP fluorescence, either by placing the two genes on the same plasmid or by fusing them translationally and interrupting the N-terminus of the chimeric ORF with a stop codon. We also describe a reporter aimed at facilitating the monitoring of continuous mutagenesis in mutator strains. This reporter couples two reversion markers, allowing the temporal separation of mutation events in time, thus providing information about the dynamics of mutagenesis in mutator strains. Here, we describe these reporter systems, provide protocols for use, and demonstrate their key functional features using error-prone Pol I mutagenesis as a source of mutations.
Collapse
Affiliation(s)
- Melissa Standley
- University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Jennifer Allen
- University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Layla Cervantes
- University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Joshua Lilly
- University of California-Santa Cruz, Santa Cruz, CA, United States
| | - Manel Camps
- University of California-Santa Cruz, Santa Cruz, CA, United States.
| |
Collapse
|
9
|
Carzaniga T, Sbarufatti G, Briani F, Dehò G. Polynucleotide phosphorylase is implicated in homologous recombination and DNA repair in Escherichia coli. BMC Microbiol 2017; 17:81. [PMID: 28376742 PMCID: PMC5379764 DOI: 10.1186/s12866-017-0980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/25/2017] [Indexed: 11/22/2022] Open
Abstract
Background Polynucleotide phosphorylase (PNPase, encoded by pnp) is generally thought of as an enzyme dedicated to RNA metabolism. The pleiotropic effects of PNPase deficiency is imputed to altered processing and turnover of mRNAs and small RNAs, which in turn leads to aberrant gene expression. However, it has long since been known that this enzyme may also catalyze template-independent polymerization of dNDPs into ssDNA and the reverse phosphorolytic reaction. Recently, PNPase has been implicated in DNA recombination, repair, mutagenesis and resistance to genotoxic agents in diverse bacterial species, raising the possibility that PNPase may directly, rather than through control of gene expression, participate in these processes. Results In this work we present evidence that in Escherichia coli PNPase enhances both homologous recombination upon P1 transduction and error prone DNA repair of double strand breaks induced by zeocin, a radiomimetic agent. Homologous recombination does not require PNPase phosphorolytic activity and is modulated by its RNA binding domains whereas error prone DNA repair of zeocin-induced DNA damage is dependent on PNPase catalytic activity and cannot be suppressed by overexpression of RNase II, the other major enzyme (encoded by rnb) implicated in exonucleolytic RNA degradation. Moreover, E. coli pnp mutants are more sensitive than the wild type to zeocin. This phenotype depends on PNPase phosphorolytic activity and is suppressed by rnb, thus suggesting that zeocin detoxification may largely depend on RNA turnover. Conclusions Our data suggest that PNPase may participate both directly and indirectly through regulation of gene expression to several aspects of DNA metabolism such as recombination, DNA repair and resistance to genotoxic agents.
Collapse
Affiliation(s)
- Thomas Carzaniga
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.,Present address: Dipartimento di Biotecnologie mediche e medicina traslazionale, Università degli Studi di Milano, via F.lli Cervi 93, Segrate, MI, 20090, Italy
| | - Giulia Sbarufatti
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.,Present address: Eurofins BioPharma Product Testing Italy, Eurofins Biolab srl, via Bruno Buozzi, 2, Vimodrone, 20090, Italy
| | - Federica Briani
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy
| | - Gianni Dehò
- Dipartimento di Bioscienze, Università degli Studi di Milano, via Celoria 26, Milan, 20133, Italy.
| |
Collapse
|
10
|
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs. J Bacteriol 2016; 198:2776-83. [PMID: 27457718 DOI: 10.1128/jb.00391-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10(-8)) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent.
Collapse
|