1
|
Xu S, Yang N. The Role and Research Progress of Mitochondria in Sensorineural Hearing Loss. Mol Neurobiol 2024:10.1007/s12035-024-04470-4. [PMID: 39292339 DOI: 10.1007/s12035-024-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024]
Abstract
Hearing loss is one of the most common human diseases, seriously affecting everyday lives. Mitochondria, as the energy metabolism center in cells, are also involved in regulating active oxygen metabolism and mediating the occurrence of inflammation and apoptosis. Mitochondrial defects are closely related to hearing diseases. Studies have shown that mitochondrial DNA mutations are one of the causes of hereditary hearing loss. In addition, changes in mitochondrial homeostasis are directly related to noise-induced hearing loss and presbycusis. This review mainly summarizes and discusses the effects of mitochondrial dysfunction and mitophagy on hearing loss. Subsequently, we introduce the recent research progress of targeted mitochondria therapy in the hearing system.
Collapse
Affiliation(s)
- Shan Xu
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Yang
- Department of Otolaryngology, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
2
|
Tsai Do BS, Bush ML, Weinreich HM, Schwartz SR, Anne S, Adunka OF, Bender K, Bold KM, Brenner MJ, Hashmi AZ, Kim AH, Keenan TA, Moore DJ, Nieman CL, Palmer CV, Ross EJ, Steenerson KK, Zhan KY, Reyes J, Dhepyasuwan N. Clinical Practice Guideline: Age-Related Hearing Loss Executive Summary. Otolaryngol Head Neck Surg 2024; 170:1209-1227. [PMID: 38682789 DOI: 10.1002/ohn.749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL) is a prevalent but often underdiagnosed and undertreated condition among individuals aged 50 and above. It is associated with various sociodemographic factors and health risks including dementia, depression, cardiovascular disease, and falls. While the causes of ARHL and its downstream effects are well defined, there is a lack of priority placed by clinicians as well as guidance regarding the identification, education, and management of this condition. PURPOSE The purpose of this clinical practice guideline is to identify quality improvement opportunities and provide clinicians trustworthy, evidence-based recommendations regarding the identification and management of ARHL. These opportunities are communicated through clear actionable statements with an explanation of the support in the literature, the evaluation of the quality of the evidence, and recommendations on implementation. The target patients for the guideline are any individuals aged 50 years and older. The target audience is all clinicians in all care settings. This guideline is intended to focus on evidence-based quality improvement opportunities judged most important by the Guideline Development Group (GDG). It is not intended to be a comprehensive, general guide regarding the management of ARHL. The statements in this guideline are not intended to limit or restrict care provided by clinicians based on their experience and assessment of individual patients. ACTION STATEMENTS The GDG made strong recommendations for the following key action statements (KASs): (KAS 4) If screening suggests hearing loss, clinicians should obtain or refer to a clinician who can obtain an audiogram. (KAS 8) Clinicians should offer, or refer to a clinician who can offer, appropriately fit amplification to patients with ARHL. (KAS 9) Clinicians should refer patients for an evaluation of cochlear implantation candidacy when patients have appropriately fit amplification and persistent hearing difficulty with poor speech understanding. The GDG made recommendations for the following KASs: (KAS 1) Clinicians should screen patients aged 50 years and older for hearing loss at the time of a health care encounter. (KAS 2) If screening suggests hearing loss, clinicians should examine the ear canal and tympanic membrane with otoscopy or refer to a clinician who can examine the ears for cerumen impaction, infection, or other abnormalities. (KAS 3) If screening suggests hearing loss, clinicians should identify sociodemographic factors and patient preferences that influence access to and utilization of hearing health care. (KAS 5) Clinicians should evaluate and treat or refer to a clinician who can evaluate and treat patients with significant asymmetric hearing loss, conductive or mixed hearing loss, or poor word recognition on diagnostic testing. (KAS 6) Clinicians should educate and counsel patients with hearing loss and their family/care partner(s) about the impact of hearing loss on their communication, safety, function, cognition, and quality of life. (KAS 7) Clinicians should counsel patients with hearing loss on communication strategies and assistive listening devices. (KAS 10) For patients with hearing loss, clinicians should assess if communication goals have been met and if there has been improvement in hearing-related quality of life at a subsequent health care encounter or within 1 year. The GDG offered the following KAS as an option: (KAS 11) Clinicians should assess hearing at least every 3 years in patients with known hearing loss or with reported concern for changes in hearing.
Collapse
Affiliation(s)
| | - Matthew L Bush
- University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | | - Kaye Bender
- Mississippi Public Health Association, Jackson, Mississippi, USA
| | | | | | | | - Ana H Kim
- Columbia University Medical Center, New York, USA
| | | | | | - Carrie L Nieman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Joe Reyes
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Nui Dhepyasuwan
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| |
Collapse
|
3
|
Tsai Do BS, Bush ML, Weinreich HM, Schwartz SR, Anne S, Adunka OF, Bender K, Bold KM, Brenner MJ, Hashmi AZ, Keenan TA, Kim AH, Moore DJ, Nieman CL, Palmer CV, Ross EJ, Steenerson KK, Zhan KY, Reyes J, Dhepyasuwan N. Clinical Practice Guideline: Age-Related Hearing Loss. Otolaryngol Head Neck Surg 2024; 170 Suppl 2:S1-S54. [PMID: 38687845 DOI: 10.1002/ohn.750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Age-related hearing loss (ARHL) is a prevalent but often underdiagnosed and undertreated condition among individuals aged 50 and above. It is associated with various sociodemographic factors and health risks including dementia, depression, cardiovascular disease, and falls. While the causes of ARHL and its downstream effects are well defined, there is a lack of priority placed by clinicians as well as guidance regarding the identification, education, and management of this condition. PURPOSE The purpose of this clinical practice guideline is to identify quality improvement opportunities and provide clinicians trustworthy, evidence-based recommendations regarding the identification and management of ARHL. These opportunities are communicated through clear actionable statements with explanation of the support in the literature, evaluation of the quality of the evidence, and recommendations on implementation. The target patients for the guideline are any individuals aged 50 years and older. The target audience is all clinicians in all care settings. This guideline is intended to focus on evidence-based quality improvement opportunities judged most important by the guideline development group (GDG). It is not intended to be a comprehensive, general guide regarding the management of ARHL. The statements in this guideline are not intended to limit or restrict care provided by clinicians based on their experience and assessment of individual patients. ACTION STATEMENTS The GDG made strong recommendations for the following key action statements (KASs): (KAS 4) If screening suggests hearing loss, clinicians should obtain or refer to a clinician who can obtain an audiogram. (KAS 8) Clinicians should offer, or refer to a clinician who can offer, appropriately fit amplification to patients with ARHL. (KAS 9) Clinicians should refer patients for an evaluation of cochlear implantation candidacy when patients have appropriately fit amplification and persistent hearing difficulty with poor speech understanding. The GDG made recommendations for the following KASs: (KAS 1) Clinicians should screen patients aged 50 years and older for hearing loss at the time of a health care encounter. (KAS 2) If screening suggests hearing loss, clinicians should examine the ear canal and tympanic membrane with otoscopy or refer to a clinician who can examine the ears for cerumen impaction, infection, or other abnormalities. (KAS 3) If screening suggests hearing loss, clinicians should identify sociodemographic factors and patient preferences that influence access to and utilization of hearing health care. (KAS 5) Clinicians should evaluate and treat or refer to a clinician who can evaluate and treat patients with significant asymmetric hearing loss, conductive or mixed hearing loss, or poor word recognition on diagnostic testing. (KAS 6) Clinicians should educate and counsel patients with hearing loss and their family/care partner(s) about the impact of hearing loss on their communication, safety, function, cognition, and quality of life (QOL). (KAS 7) Clinicians should counsel patients with hearing loss on communication strategies and assistive listening devices. (KAS 10) For patients with hearing loss, clinicians should assess if communication goals have been met and if there has been improvement in hearing-related QOL at a subsequent health care encounter or within 1 year. The GDG offered the following KAS as an option: (KAS 11) Clinicians should assess hearing at least every 3 years in patients with known hearing loss or with reported concern for changes in hearing.
Collapse
Affiliation(s)
| | - Matthew L Bush
- University of Kentucky Medical Center, Lexington, Kentucky, USA
| | | | | | | | | | - Kaye Bender
- Mississippi Public Health Association, Jackson, Mississippi, USA
| | | | | | | | | | - Ana H Kim
- Columbia University Medical Center, New York, New York, USA
| | | | - Carrie L Nieman
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | - Joe Reyes
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| | - Nui Dhepyasuwan
- American Academy of Otolaryngology-Head and Neck Surgery Foundation, Alexandria, Virginia, USA
| |
Collapse
|
4
|
Yu X, Li S, Guo Q, Leng J, Ding Y. The Association Between Mitochondrial tRNA Glu Variants and Hearing Loss: A Case-Control Study. Pharmgenomics Pers Med 2024; 17:77-89. [PMID: 38562431 PMCID: PMC10984097 DOI: 10.2147/pgpm.s441281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This study aimed to examine the frequencies of mt-tRNAGlu variants in 180 pediatric patients with non-syndromic hearing loss (NSHL) and 100 controls. Methods Sanger sequencing was performed to screen for mt-tRNAGlu variants. These mitochondrial DNA (mtDNA) pathogenic mutations were further assessed using phylogenetic conservation and haplogroup analyses. We also traced the origins of the family history of probands carrying potential pathogenic mtDNA mutations. Mitochondrial functions including mtDNA content, ATP and reactive oxygen species (ROS) were examined in cells derived from patients carrying the mt-tRNAGlu A14692G and CO1/tRNASer(UCN) G7444A variants and controls. Results We identified four possible pathogenic variants: m.T14709C, m.A14683G, m.A14692G and m.A14693G, which were found in NSHL patients but not in controls. Genetic counseling suggested that one child with the m.A14692G variant had a family history of NSHL. Sequence analysis of mtDNA suggested the presence of the CO1/tRNASer(UCN) G7444A and mt-tRNAGlu A14692G variants. Molecular analysis suggested that, compared with the controls, patients with these variants exhibited much lower mtDNA copy numbers, ATP production, whereas ROS levels increased (p<0.05 for all), suggesting that the m.A14692G and m.G7444A variants led to mitochondrial dysfunction. Conclusion mt-tRNAGlu variants are important risk factors for NSHL.
Collapse
Affiliation(s)
- Xuejiao Yu
- Department of Clinical Laboratory, Quzhou People’s Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, 324000, People’s Republic of China
| | - Sheng Li
- Department of Otolaryngology, Quzhou People’s Hospital, the Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, Zhejiang Province, 324000, People’s Republic of China
| | - Qinxian Guo
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| | - Jianhang Leng
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| | - Yu Ding
- Central Laboratory, Hangzhou First People’s Hospital, Hangzhou, Zhejiang Province, 310006, People’s Republic of China
| |
Collapse
|
5
|
Reynard P, Thai-Van H. Drug-induced hearing loss: Listening to the latest advances. Therapie 2024; 79:283-295. [PMID: 37957052 DOI: 10.1016/j.therap.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023]
Abstract
Sensorineural hearing loss (SNHL) is the most common type of hearing loss. Causes include degenerative changes in the sensory hair cells, their synapses and/or the cochlear nerve. As human inner ear hair cells have no capacity for regeneration, their destruction is irreversible and leads to permanent hearing loss. SNHL can be genetically inherited or acquired through ageing, exposure to noise or ototoxic drugs. Ototoxicity generally refers to damage to the structures and functions of the inner ear following exposure to specific drugs. Ototoxicity can be multifactorial, causing damage to cochlear hair cells or cells with homeostatic functions that modulate cochlear hair cell function. Clinical strategies to limit ototoxicity include identifying patients at risk, monitoring drug concentrations, performing serial hearing assessments and switching to less ototoxic therapy. This review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, using the PubMed® database. The search terms "ototoxicity", "hearing loss" and "drugs" were combined. We included studies published between September 2013 and June 2023, and focused on medicines and drugs used in hospitals. The review highlighted a number of articles reporting the main drug classes potentially involved: namely, immunosuppressants, antimalarials, vaccines, antibiotics, antineoplastic agents, diuretics, nonsteroidal anti-inflammatory drugs and analgesics. The presumed ototoxic mechanisms were described, together with the therapeutic and preventive options developed over the last ten years.
Collapse
Affiliation(s)
- Pierre Reynard
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France
| | - Hung Thai-Van
- Service d'audiologie & explorations oto-neurologiques, hospices civils de Lyon, hôpital Edouard-Herriot & hôpital Femme Mère-Enfant, 69000 Lyon, France; Institut Pasteur, Institut de l'Audition, Center for Research and Innovation in Human Audiology, 75000 Paris, France; Université Claude Bernard Lyon 1, 69622 Villeurbanne, France.
| |
Collapse
|
6
|
van Kempen CMA, Beynon AJ, Smits JJ, Janssen MCH. A retrospective cohort study exploring the association between different mitochondrial diseases and hearing loss. Mol Genet Metab 2022; 135:333-341. [PMID: 35190254 DOI: 10.1016/j.ymgme.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
Some pathogenic variants in mtDNA and nuclear DNA, affecting mitochondrial function, are associated with hearing loss. Behavioral and electrophysiological auditory performance are obtained from 62 patients, clinically diagnosed with different mitochondrial diseases (MD) using tone/speech audiometry and Auditory Brainstem Responses (ABR). Audiological variables (hearing loss type, pure tone average (PTA), interaural asymmetry, speech perception and brainstem neural conductivity) were analyzed and related to Newcastle Mitochondrial Disease Scale for Adults (NMDAS). In 35% of MDs, a mild to severe symmetrical sensorineural hearing loss (SNHL) was found. Patients with Maternally Inherited Diabetes and Deafness (MIDD) show significantly higher PTAs compared to other MDs. For all MDs, speech recognition scores were in accordance with their individual age- and gender-corrected tone audiometry, but ABR peak latencies were prolonged in patients with MIDD, Mitochondrial Encephalopathy Lactate acidosis and Stroke-like episodes (MELAS), Chronic Progressive External Ophthalmoplegia (CPEO) and Subacute necrotizing encephalopathy (Leigh). Correlations between NMDAS and audiological variables were low.
Collapse
Affiliation(s)
- Carlijn M A van Kempen
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Andy J Beynon
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands.
| | - Jeroen J Smits
- Dept. Oto-Rhino-Laryngology, Head and Neck Surgery, Radboudumc Nijmegen, the Netherlands
| | - Mirian C H Janssen
- Dept. Internal Medicine, Radboud Center for Mitochondrial Medicine, Radboudumc Nijmegen, the Netherlands
| |
Collapse
|
7
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|