Yuan L, Wang T, Duan J, Zhou J, Li N, Li G, Zhou H. Expression Profiles and Bioinformatic Analysis of Circular RNAs in Db/Db Mice with Cardiac Fibrosis.
Diabetes Metab Syndr Obes 2024;
17:2107-2120. [PMID:
38799279 PMCID:
PMC11128257 DOI:
10.2147/dmso.s465588]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction
Cardiac fibrosis is one of the important causes of heart failure and death in diabetic cardiomyopathy (DCM) patients. Circular RNAs (circRNAs) are covalently closed RNA molecules in eukaryotes and have high stability. Their role in myocardial fibrosis with diabetic cardiomyopathy (DCM) remain to be fully elucidated. This study aimed to understand the expression profiles of circRNAs in myocardial fibrosis with DCM, exploring the possible biomarkers and therapeutic targets for DCM.
Methods
At 21 weeks of age, db/db mice established the type 2 DCM model measured by echocardiography, and the cardiac tissue was extracted for Hematoxylin-eosin, Masson's trichrome staining, and transmission electron microscopy. Subsequently, the expression profile of circRNAs in myocardial fibrosis of db/db mice was constructed using microarray hybridization and verified by real-time quantitative polymerase chain reaction. A circRNA-microRNA-messenger RNA coexpression network was constructed, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were done.
Results
Compared with normal control mice, db/db mice had 77 upregulated circRNAs and 135 downregulated circRNAs in their chromosomes (fold change ≥1.5, P ≤ 0.05). Moreover, the enrichment analysis of circRNA host genes showed that these differentially expressed circRNAs were mainly involved in mitogen-activated protein kinase signaling pathways. CircPHF20L1, circCLASP1, and circSLC8A1 were the key circRNAs. Moreover, circCLASP1/miR-182-5p/Wnt7a, circSLC8A1/miR-29b-1-5p/Col12a1, and most especially circPHF20L1/miR-29a-3p/Col6a2 might be three novel axes in the development of myocardial fibrosis in DCM.
Conclusion
The findings will provide some novel circRNAs and molecular pathways for the prevention or clinical treatment of DCM through intervention with specific circRNAs.
Collapse