1
|
Rodrigues MA, Probst CE, Zayats A, Davidson B, Riedel M, Li Y, Venkatachalam V. The in vitro micronucleus assay using imaging flow cytometry and deep learning. NPJ Syst Biol Appl 2021; 7:20. [PMID: 34006858 PMCID: PMC8131758 DOI: 10.1038/s41540-021-00179-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/16/2021] [Indexed: 02/07/2023] Open
Abstract
The in vitro micronucleus (MN) assay is a well-established assay for quantification of DNA damage, and is required by regulatory bodies worldwide to screen chemicals for genetic toxicity. The MN assay is performed in two variations: scoring MN in cytokinesis-blocked binucleated cells or directly in unblocked mononucleated cells. Several methods have been developed to score the MN assay, including manual and automated microscopy, and conventional flow cytometry, each with advantages and limitations. Previously, we applied imaging flow cytometry (IFC) using the ImageStream® to develop a rapid and automated MN assay based on high throughput image capture and feature-based image analysis in the IDEAS® software. However, the analysis strategy required rigorous optimization across chemicals and cell lines. To overcome the complexity and rigidity of feature-based image analysis, in this study we used the Amnis® AI software to develop a deep-learning method based on convolutional neural networks to score IFC data in both the cytokinesis-blocked and unblocked versions of the MN assay. We show that the use of the Amnis AI software to score imagery acquired using the ImageStream® compares well to manual microscopy and outperforms IDEAS® feature-based analysis, facilitating full automation of the MN assay.
Collapse
Affiliation(s)
| | | | - Artiom Zayats
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Bryan Davidson
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Michael Riedel
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | - Yang Li
- Amnis Flow Cytometry, Luminex Corporation, Seattle, WA, USA
| | | |
Collapse
|
2
|
Whitwell J, Smith R, Chirom T, Watters G, Hargreaves V, Lloyd M, Phillips S, Clements J. Inclusion of an extended treatment with recovery improves the results for the human peripheral blood lymphocyte micronucleus assay. Mutagenesis 2019; 34:217-237. [PMID: 31209484 DOI: 10.1093/mutage/gez011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/22/2019] [Accepted: 05/03/2019] [Indexed: 12/19/2022] Open
Abstract
The in vitro micronucleus (IVMN) test was endorsed for regulatory genotoxicity testing with adoption of the Organisation for Economic Co-operation and Development (OECD) test guideline (TG) 487 in 2010. This included two equally acceptable options for extended treatment in the absence of metabolic activation: a treatment for 1.5-2.0 cell cycles with harvest at the end of treatment (Option A) or treatment for 1.5-2.0 cell cycles followed by recovery for 1.5-2.0 cell cycles prior to harvest (Option B). Although no preferences were discussed, TG 487 cautions that Option B may not be appropriate for stimulated lymphocytes where exponential growth may be declining at 96 h after phytohaemagglutinin (PHA) stimulation. Following revision of TG 487 in 2014 and 2016, emphasis has been placed on using Option A. Given the purpose of the IVMN assay is to determine both clastogenic and aneugenic potential, the authors believe the assay is compromised if an extended treatment with recovery is not included for sensitive detection of certain classes of chemical. In this study, average generation time (via bromodeoxyuridine incorporation) of human peripheral blood lymphocytes (HPBL) was measured up to 144 h after PHA stimulation. In addition, the HPBL micronucleus (MN) assay was performed using Option A and B treatment schedules. Cytotoxicity (replication index) and MN induction were determined following treatment with 14 chemicals. The data demonstrate that lymphocytes actively divide beyond 96 h after PHA stimulation. Furthermore, MN induction was only observed with some aneugenic chemicals and nucleoside analogues in HPBLs following extended treatment with a recovery period. For the majority of chemicals tested the magnitude of MN induction was generally greater and MN induction was observed across a wider concentration range following the Option B treatment schedule. In addition, steep concentration-related toxicity following treatment without recovery is more common, making selection of suitable concentrations (within regulatory toxicity limits) for MN analysis challenging.
Collapse
Affiliation(s)
- James Whitwell
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Robert Smith
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Teresa Chirom
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Gary Watters
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Victoria Hargreaves
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Mel Lloyd
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Sarah Phillips
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| | - Julie Clements
- Covance Laboratories Ltd, Genetic Toxicology, Harrogate, North Yorkshire, UK
| |
Collapse
|
3
|
Rodrigues MA. Automation of the in vitro micronucleus assay using the Imagestream ® imaging flow cytometer. Cytometry A 2018; 93:706-726. [PMID: 30118149 PMCID: PMC6174940 DOI: 10.1002/cyto.a.23493] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/02/2022]
Abstract
The in vitro micronucleus (MN) assay is a well‐established test for evaluating genotoxicity and cytotoxicity. The use of manual microscopy to perform the assay can be laborious and often suffers from user subjectivity and interscorer variability. Automated methods including slide‐scanning microscopy and conventional flow cytometry have been developed to eliminate scorer bias and improve throughput. However, these methods possess several limitations such as lack of cytoplasmic visualization using slide‐scanning microscopy and the inability to visually confirm the legitimacy of MN or storage of image data for re‐evaluation using flow cytometry. The ImageStreamX® MK II (ISX) imaging flow cytometer has been demonstrated to overcome all of these limitations. The ISX combines the speed, statistical robustness, and rare event capture capability of conventional flow cytometry with high resolution fluorescent imagery of microscopy and possesses the ability to store all collected image data. This paper details the methodology developed to perform the in vitro MN assay in human lymphoblastoid TK6 cells on the ISX. High resolution images of micronucleated mono‐ and bi‐nucleated cells as well as polynucleated cells can be acquired at a high rate of capture. All images can then be automatically identified, categorized and enumerated in the data analysis software that accompanies the ImageStream, allowing for the scoring of both genotoxicity and cytotoxicity. The results demonstrate that statistically significant increases in MN frequency when compared with solvent controls can be detected at varying levels of cytotoxicity following exposure to well‐known aneugens and clastogens. This work demonstrates a fully automated method for performing the in vitro micronucleus assay on the ISX imaging flow cytometry platform. © 2018 The Author. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.
Collapse
|
4
|
Nicolette J, Diehl M, Sonders P, Bryce S, Blomme E. In vitro micronucleus screening of pharmaceutical candidates by flow cytometry in Chinese hamster V79 cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2011; 52:355-362. [PMID: 20963813 DOI: 10.1002/em.20631] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/06/2010] [Accepted: 08/10/2010] [Indexed: 05/30/2023]
Abstract
We previously reported a high concordance of in vitro micronucleus (MNvit) results obtained by flow cytometry to the known cytogenetic activity often commercially available compounds mentioned as validation compounds in an early draft of the OECD MNvit TG487 [Bryce et al., 2010; Organization for Economic Co-operation and Development(OECD), 2007]. The current study investigated this method in Chinese hamster V79 cells with pharmaceutical compounds of unknown genotoxic potential. Twenty-five compounds from several therapeutic areas such as oncology, neuroscience and immunological research were tested in the flow cytometry assay, and for comparison using the cytokinesis-block microscopy assay. Five of these 25 compounds were considered positive for micronucleus induction by the microscopy assessment. In all cases, the results from the flow cytometry assess ment matched the results of the microscopy assay. Thus, flow cytometry is a viable method for assessing the aneugenic/clastogenic potential of pharmaceutical drug candidates. The flow method offered several advantages over traditional microscopy. For instance, the ratio of micronuclei (MN) to 10,000 nuclei was evaluated in less than 2 min vs.15 min to manually assess 600 binucleate cells. Evaluation by flow cytometry can be automated,freeing resources and eliminating scorer fatigue.The assay may also provide for mechanistic understanding of MN formation based on size and the ratio of nuclei with sub-2N DNA content, allowing for discrimination between aneugenic and clastogenic compounds.
Collapse
|
5
|
Abstract
The cytokinesis-block micronucleus cytome assay is a comprehensive system for measuring DNA damage, cytostasis and cytotoxicity. DNA damage events are scored specifically in once-divided binucleated (BN) cells and include (a) micronuclei (MNi), a biomarker of chromosome breakage and/or whole chromosome loss, (b) nucleoplasmic bridges (NPBs), a biomarker of DNA misrepair and/or telomere end-fusions, and (c) nuclear buds (NBUDs), a biomarker of elimination of amplified DNA and/or DNA repair complexes. Cytostatic effects are measured via the proportion of mono-, bi- and multinucleated cells and cytotoxicity via necrotic and/or apoptotic cell ratios. Further information regarding mechanisms leading to MNi, NPBs and NBUDs formation is obtained using centromere and/or telomere probes. The assay is being applied successfully for biomonitoring of in vivo genotoxin exposure, in vitro genotoxicity testing and in diverse research fields such as nutrigenomics and pharmacogenomics as well as a predictor of normal tissue and tumor radiation sensitivity and cancer risk. The procedure can take up to 5 days to complete.
Collapse
Affiliation(s)
- Michael Fenech
- Genome Health Nutrigenomics Laboratory, CSIRO Human Nutrition, Food Science Australia, PO Box 10041, Adelaide 5000, South Australia, Australia.
| |
Collapse
|