1
|
Pinilla M, Mazars R, Vergé R, Gorse L, Paradis M, Suire B, Santoni K, Robinson KS, Toh GA, Prouvensier L, Leon-Icaza SA, Hessel A, Péricat D, Murris M, Guet-Revillet H, Henras A, Buyck J, Ravet E, Zhong FL, Cougoule C, Planès R, Meunier E. EEF2-inactivating toxins engage the NLRP1 inflammasome and promote epithelial barrier disruption. J Exp Med 2023; 220:e20230104. [PMID: 37642996 PMCID: PMC10465324 DOI: 10.1084/jem.20230104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 08/31/2023] Open
Abstract
Human airway and corneal epithelial cells, which are critically altered during chronic infections mediated by Pseudomonas aeruginosa, specifically express the inflammasome sensor NLRP1. Here, together with a companion study, we report that the NLRP1 inflammasome detects exotoxin A (EXOA), a ribotoxin released by P. aeruginosa type 2 secretion system (T2SS), during chronic infection. Mechanistically, EXOA-driven eukaryotic elongation factor 2 (EEF2) ribosylation and covalent inactivation promote ribotoxic stress and subsequent NLRP1 inflammasome activation, a process shared with other EEF2-inactivating toxins, diphtheria toxin and cholix toxin. Biochemically, irreversible EEF2 inactivation triggers ribosome stress-associated kinases ZAKα- and P38-dependent NLRP1 phosphorylation and subsequent proteasome-driven functional degradation. Finally, cystic fibrosis cells from patients exhibit exacerbated P38 activity and hypersensitivity to EXOA-induced ribotoxic stress-dependent NLRP1 inflammasome activation, a process inhibited by the use of ZAKα inhibitors. Altogether, our results show the importance of P. aeruginosa virulence factor EXOA at promoting NLRP1-dependent epithelial damage and identify ZAKα as a critical sensor of virulence-inactivated EEF2.
Collapse
Affiliation(s)
- Miriam Pinilla
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Raoul Mazars
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Romain Vergé
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Leana Gorse
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Margaux Paradis
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Bastien Suire
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Karin Santoni
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Kim Samirah Robinson
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Gee Ann Toh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Laure Prouvensier
- UFR Medicine and Pharmacy, INSERM U1070, University of Poitiers, Poitiers, France
| | | | - Audrey Hessel
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - David Péricat
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Marlène Murris
- Department of Pneumology, Hospital Larrey, Toulouse, France
- University Hospital of Toulouse, Toulouse, France
| | | | - Anthony Henras
- Center of Integrative Biology, University of Toulouse, CNRS, Toulouse, France
| | - Julien Buyck
- UFR Medicine and Pharmacy, INSERM U1070, University of Poitiers, Poitiers, France
| | | | - Franklin L. Zhong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Skin Research Institute of Singapore, Singapore, Singapore
| | - Céline Cougoule
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| | - Rémi Planès
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
- Invivogen, Toulouse, France
| | - Etienne Meunier
- Institute of Pharmacology and Structural Biology, University of Toulouse, CNRS, Toulouse, France
| |
Collapse
|
2
|
Lange MJ, Lyddon TD, Johnson MC. Diphtheria Toxin A-Resistant Cell Lines Enable Robust Production and Evaluation of DTA-Encoding Lentiviruses. Sci Rep 2019; 9:8985. [PMID: 31222087 PMCID: PMC6586843 DOI: 10.1038/s41598-019-45481-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Suicide genes have been widely investigated for their utility as therapeutic agents and as tools for in vitro negative selection strategies. Several methods for delivery of suicide genes have been explored. Two important considerations for delivery are the quantity of delivered cargo and the ability to target the cargo to specific cells. Delivery using a lentiviral vector is particularly attractive due to the ability to encode the gene within the viral genome, as well as the ability to limit off-target effects by using cell type-specific glycoproteins. Here, we present the design and validation of a diphtheria toxin A (DTA)-encoding lentiviral vector expressing DTA under the control of a constituitive promoter to allow for expression of DTA in a variety of cell types, with specificity provided via selection of glycoproteins for pseudotyping of the lentiviral particles. DTA exerts its toxic activity through inhibition of eukaryotic translation elongation factor 2 (eEF2) via adenosine diphosphate (ADP)-ribosylation of a modified histidine residue, diphthamide, at His715, which blocks protein translation and leads to cell death. Thus, we also detail development of DTA-resistant cell lines, engineered through CRISPR/Cas9-mediated knockout of the diphthamide 1 (DPH1) gene, which enable both robust virus production by transfection and evaluation of DTA-expressing virus infectivity.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA. .,Department of Molecular Microbiology & Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States.
| | - Terri D Lyddon
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA. .,Department of Molecular Microbiology & Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
3
|
A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015; 5:14721. [PMID: 26420058 PMCID: PMC4588510 DOI: 10.1038/srep14721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
We developed a selectable marker rendering human cells resistant to Diphtheria Toxin (DT). The marker (DTR) consists of a primary microRNA sequence engineered to downregulate the ubiquitous DPH2 gene, a key enzyme for the biosynthesis of the DT target diphthamide. DTR expression in human cells invariably rendered them resistant to DT in vitro, without altering basal cell growth. DTR-based selection efficiency and stability were comparable to those of established drug-resistance markers. As mice are insensitive to DT, DTR-based selection can be also applied in vivo. Direct injection of a GFP-DTR lentiviral vector into human cancer cell-line xenografts and patient-derived tumorgrafts implanted in mice, followed by systemic DT administration, yielded tumors entirely composed of permanently transduced cells and detectable by imaging systems. This approach enabled high-efficiency in vivo selection of xenografted human tumor tissues expressing ectopic transgenes, a hitherto unmet need for functional and morphological studies in laboratory animals.
Collapse
|
4
|
Greganova E, Bütikofer P. Ethanolamine phosphoglycerol attachment to eEF1A is not essential for normal growth of Trypanosoma brucei. Sci Rep 2012; 2:254. [PMID: 22355766 PMCID: PMC3275919 DOI: 10.1038/srep00254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 01/24/2012] [Indexed: 12/24/2022] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) is the only protein modified by ethanolamine phosphoglycerol (EPG). In mammals and plants, EPG is attached to conserved glutamate residues located in eEF1A domains II and III, whereas in the unicellular eukaryote, Trypanosoma brucei, a single EPG moiety is attached to domain III. A biosynthetic precursor of EPG and structural requirements for EPG attachment to T. brucei eEF1A have been reported, but the role of this unique protein modification in cellular growth and eEF1A function has remained elusive. Here we report, for the first time in a eukaryotic cell, a model system to study potential roles of EPG. By down-regulation of EF1A expression and subsequent complementation of eEF1A function using conditionally expressed exogenous eEF1A (mutant) proteins, we show that eEF1A lacking EPG complements trypanosomes deficient in endogenous eEF1A, demonstrating that EPG attachment is not essential for normal growth of T. brucei in culture.
Collapse
|
6
|
Abstract
Covalent modifications of proteins often modulate their biological functions or change their subcellular location. Among the many known protein modifications, three are exceptional in that they only occur on single proteins: ethanolamine phosphoglycerol, diphthamide and hypusine. Remarkably, the corresponding proteins carrying these modifications, elongation factor 1A, elongation factor 2 and initiation factor 5A, are all involved in elongation steps of translation. For diphthamide and, in part, hypusine, functional essentiality has been demonstrated, whereas no functional role has been reported so far for ethanolamine phosphoglycerol. We review the biosynthesis, attachment and physiological roles of these unique protein modifications and discuss common and separate features of the target proteins, which represent essential proteins in all organisms.
Collapse
Affiliation(s)
- Eva Greganova
- Institute for Biochemistry and Molecular Medicine, University of Berne, Berne, Switzerland
| | | | | |
Collapse
|
7
|
Gupta PK, Liu S, Batavia MP, Leppla SH. The diphthamide modification on elongation factor-2 renders mammalian cells resistant to ricin. Cell Microbiol 2008; 10:1687-94. [PMID: 18460012 DOI: 10.1111/j.1462-5822.2008.01159.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Diphthamide is a post-translational derivative of histidine in protein synthesis elongation factor-2 (eEF-2) that is present in all eukaryotes with no known normal physiological role. Five proteins Dph1-Dph5 are required for the biosynthesis of diphthamide. Chinese hamster ovary (CHO) cells mutated in the biosynthetic genes lack diphthamide and are resistant to bacterial toxins such as diphtheria toxin. We found that diphthamide-deficient cultured cells were threefold more sensitive than their parental cells towards ricin, a ribosome-inactivating protein (RIP). RIPs bind to ribosomes at the same site as eEF-2 and cleave the large ribosomal RNA, inhibiting translation and causing cell death. We hypothesized that one role of diphthamide may be to protect ribosomes, and therefore all eukaryotic life forms, from RIPs, which are widely distributed in nature. A protective role of diphthamide against ricin was further demonstrated by complementation where dph mutant CHO cells transfected with the corresponding DPH gene acquired increased resistance to ricin in comparison with the control-transfected cells, and resembled the parental CHO cells in their response to the toxin. These data show that the presence of diphthamide in eEF-2 provides protection against ricin and suggest the hypothesis that diphthamide may have evolved to provide protection against RIPs.
Collapse
Affiliation(s)
- Pradeep K Gupta
- Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|