1
|
Carante MP, Aricò G, Ferrari A, Kozlowska W, Mairani A, Ballarini F. First benchmarking of the BIANCA model for cell survival prediction in a clinical hadron therapy scenario. Phys Med Biol 2019; 64:215008. [PMID: 31569085 DOI: 10.1088/1361-6560/ab490f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the framework of RBE modelling for hadron therapy, the BIANCA biophysical model was extended to O-ions and was used to construct a radiobiological database describing the survival of V79 cells as a function of ion type (1 ⩽ Z ⩽ 8) and energy. This database allowed performing RBE predictions in very good agreement with experimental data. A method was then developed to construct analogous databases for different cell lines, starting from the V79 database as a reference. Following interface to the FLUKA Monte Carlo radiation transport code, BIANCA was then applied for the first time to predict cell survival in a typical patient treatment scenario, consisting of two opposing fields of range-equivalent protons or C-ions. The model predictions were found to be in good agreement with CHO cell survival data obtained at the Heidelberg ion-beam therapy (HIT) centre, as well as predictions performed by the local effect model (version LEM IV). This work shows that BIANCA can be used to predict cell survival and RBE not only for V79 and AG01522 cells, as shown previously, but also, in principle, for any cell line of interest. Furthermore, following interface to a transport code like FLUKA, BIANCA can provide predictions of 3D biological dose distributions for hadron therapy treatments, thus laying the foundations for future applications in clinics.
Collapse
Affiliation(s)
- M P Carante
- INFN (National Institute of Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy. Physics Department, University of Pavia, via Bassi 6, I-27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
2
|
Binz RL, Tian E, Sadhukhan R, Zhou D, Hauer-Jensen M, Pathak R. Identification of novel breakpoints for locus- and region-specific translocations in 293 cells by molecular cytogenetics before and after irradiation. Sci Rep 2019; 9:10554. [PMID: 31332273 PMCID: PMC6646394 DOI: 10.1038/s41598-019-47002-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
The human kidney embryonic 293 cell line (293 cells) is extensively used in biomedical and pharmaceutical research. These cells exhibit a number of numerical and structural chromosomal anomalies. However, the breakpoints responsible for these structural chromosomal rearrangements have not been comprehensively characterized. In addition, it is not known whether chromosomes with structural rearrangement are more sensitive to external toxic agents, such as ionizing radiation. We used G-banding, spectral karyotyping (SKY), and locus- and region-specific fluorescence in situ hybridization (FISH) probes designed in our lab or obtained from commercial vendor to address this gap. Our G-banding analysis revealed that the chromosome number varies from 66 to 71, with multiple rearrangements and partial additions and deletions. SKY analysis confirmed 3 consistent rearrangements, two simple and one complex in nature. Multicolor FISH analysis identified an array of breakpoints responsible for locus- and region-specific translocations. Finally, SKY analysis revealed that radio-sensitivity of structurally rearranged chromosomes is dependent on radiation dose. These findings will advance our knowledge in 293 cell biology and will enrich the understanding of radiation biology studies.
Collapse
Affiliation(s)
- Regina L Binz
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Erming Tian
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ratan Sadhukhan
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Pharmacodynamics, College of Pharmacy, Gainesville, FL, USA
| | - Martin Hauer-Jensen
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Rupak Pathak
- Division of Radiation Health, Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
3
|
Miousse IR, Koturbash I, Chalbot MC, Hauer-Jensen M, Kavouras I, Pathak R. Analysis of the Ambient Particulate Matter-induced Chromosomal Aberrations Using an In Vitro System. J Vis Exp 2016:54969. [PMID: 28060322 PMCID: PMC5226431 DOI: 10.3791/54969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exposure to particulate matter (PM) is a major world health concern, which may damage various cellular components, including the nuclear genetic material. To assess the impact of PM on nuclear genetic integrity, structural chromosomal aberrations are scored in the metaphase spreads of mouse RAW264.7 macrophage cells. PM is collected from ambient air with a high volume total suspended particles sampler. The collected material is solubilized and filtered to retain the water-soluble, fine portion. The particles are characterized for chemical composition by nuclear magnetic resonance (NMR) spectroscopy. Different concentrations of particle suspension are added onto an in vitro culture of RAW264.7 mouse macrophages for a total exposure time of 72 hr, along with untreated control cells. At the end of exposure, the culture is treated with colcemid to arrest cells in metaphase. Cells are then harvested, treated with hypotonic solution, fixed in acetomethanol, dropped onto glass slides and finally stained with Giemsa solution. Slides are examined to assess the structural chromosomal aberrations (CAs) in metaphase spreads at 1,000X magnification using a bright-field microscope. 50 to 100 metaphase spread are scored for each treatment group. This technique is adapted for the detection of structural chromosomal aberrations (CAs), such as chromatid-type breaks, chromatid-type exchanges, acentric fragments, dicentric and ring chromosomes, double minutes, endoreduplication, and Robertsonian translocations in vitro after exposure to PM. It is a powerful method to associate a well-established cytogenetic endpoint to epigenetic alterations.
Collapse
Affiliation(s)
- Isabelle R Miousse
- Department of Occupational and Environmental Health, University of Arkansas for Medical Sciences;
| | - Igor Koturbash
- Department of Occupational and Environmental Health, University of Arkansas for Medical Sciences;
| | - Marie-Cécile Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham
| | | | - Ilias Kavouras
- Department of Environmental Health Sciences, University of Alabama at Birmingham
| | - Rupak Pathak
- Division of Radiation Health, University of Arkansas for Medical Sciences
| |
Collapse
|
4
|
Ramos D, Gaspar J, Pingarilho M, Gil O, Fernandes A, Rueff J, Oliveira N. Genotoxic effects of doxorubicin in cultured human lymphocytes with different glutathione S-transferase genotypes. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 724:28-34. [DOI: 10.1016/j.mrgentox.2011.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/08/2011] [Accepted: 04/30/2011] [Indexed: 11/29/2022]
|
5
|
Abstract
BACKGROUND In vitro RBE values for various high LET radiation types have been determined for many different cell types. Occasionally it is criticized that RBE for a given endpoint cannot be single-value dependent on LET alone, but also on particle species, due to the different dose deposition profiles on microscopic scale. Hence LET is not sufficient as a predictor of RBE, and this is one of the motivations for development of radiobiological models which explicitly depend on the detailed particle energy spectrum of the applied radiation field. The aim of the present study is to summarize the available data in the literature regarding the dependency of RBE on LET for different particles. METHOD As RBE is highly dependent on cell type and endpoint, we discriminated the RBE-LET relationship for the three investigated cell lines and at the same endpoint (10% survival in colony formation). Data points were collected from 20, four and four publications for V79, CHO and T1, respectively, in total covering 228 RBE values from a broad range of particle species. RESULTS AND DISCUSSION All RBE-LET data points demonstrate surprising agreement within the general error band formed by the numerous data points, and display the expected RBE peak at around 100-200 keV/μm. For all three cell lines, the influence of varying the particle type on the RBE was far from obvious, compared to the general experimental noise. Therefore, a dependence of particle type cannot be concluded, and LET alone in fact does seem to be an adequate parameter for describing RBE at 10% survival.
Collapse
Affiliation(s)
- Brita Singers Sørensen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | | | | |
Collapse
|
6
|
Wang P, Zhen H, Jiang X, Zhang W, Cheng X, Guo G, Mao X, Zhang X. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax. BMC Cancer 2010; 10:661. [PMID: 21122152 PMCID: PMC3003659 DOI: 10.1186/1471-2407-10-661] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 12/02/2010] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. METHODS The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. RESULTS Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P < 0.01). Nuclear condensation was determined using both a fluorescence technique and electron microscopy in all cell lines treated with BPA-BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P < 0.01). The clonogenicity of glioma cells was reduced by BPA-BNCT compared with cells treated in the reactor (Group F, G, H, I), and with the control cells (P < 0.01). Upon BPA-BNCT treatment, the Bax level increased in glioma cells, whereas Bcl-2 expression decreased. CONCLUSIONS Compared with γ-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by BNCT may be related to activation of Bax and downregulation of Bcl-2.
Collapse
Affiliation(s)
- Peng Wang
- Department of Neurosurgery of Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ochab-Marcinek A, Gudowska-Nowak E, Nasonova E, Ritter S. Modeling radiation-induced cell cycle delays. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:361-370. [PMID: 19669777 DOI: 10.1007/s00411-009-0239-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 07/22/2009] [Indexed: 05/28/2023]
Abstract
Ionizing radiation is known to delay the cell cycle progression. In particular after particle exposure significant delays have been observed and it has been shown that the extent of delay affects the expression of damage, such as chromosome aberrations. Thus, to predict how cells respond to ionizing radiation and to derive reliable estimates of radiation risks, information about radiation-induced cell cycle perturbations is required. In the present study we describe and apply a method for retrieval of information about the time-course of all cell cycle phases from experimental data on the mitotic index only. We study the progression of mammalian cells through the cell cycle after exposure. The analysis reveals a prolonged block of damaged cells in the G2 phase. Furthermore, by performing an error analysis on simulated data valuable information for the design of experimental studies has been obtained. The analysis showed that the number of cells analyzed in an experimental sample should be at least 100 to obtain a relative error <20%.
Collapse
Affiliation(s)
- Anna Ochab-Marcinek
- Department of Soft Condensed Matter, Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, Warsaw, Poland.
| | | | | | | |
Collapse
|
8
|
Czub J, Banaś D, Błaszczyk A, Braziewicz J, Buraczewska I, Choiński J, Górak U, Jaskóła M, Korman A, Lankoff A, Lisowska H, Łukaszek A, Szefliński Z, Wójcik A. Cell survival and chromosomal aberrations in CHO-K1 cells irradiated by carbon ions. Appl Radiat Isot 2009; 67:447-53. [DOI: 10.1016/j.apradiso.2008.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Girigoswami K, Ku SH, Ryu J, Park CB. A synthetic amyloid lawn system for high-throughput analysis of amyloid toxicity and drug screening. Biomaterials 2008; 29:2813-9. [DOI: 10.1016/j.biomaterials.2008.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 03/18/2008] [Indexed: 11/17/2022]
|