1
|
Hercog K, Maisanaba S, Filipič M, Sollner-Dolenc M, Kač L, Žegura B. Genotoxic activity of bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF and their mixtures in human hepatocellular carcinoma (HepG2) cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:267-276. [PMID: 31207516 DOI: 10.1016/j.scitotenv.2019.05.486] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 05/25/2023]
Abstract
The use of bisphenol A (BPA) in manufacturing of plastics is being gradually replaced by presumably safer analogues such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF). Despite their widespread occurrence in the environment, there is a knowledge gap in their toxicological profiles. We investigated cytotoxic/genotoxic effects as well as changes in the expression of selected genes involved in the xenobiotic metabolism, response to oxidative stress and DNA damage upon exposure to BPs and their mixtures in human hepatocellular carcinoma HepG2 cells. BPS and BPF slightly decreased the viability of HepG2 cells, while BPAF was the most cytotoxic compound tested. BPA, BPF and BPAF induced the formation of DNA double strand breaks determined with γH2AX assay, while BPS was inactive (5-20 μg/mL). All four BPs up-regulated the expression of CYP1A1 and UGT1A1, while BPS up-regulated and BPAF down-regulated also the expression of GST1A. Only BPA up-regulated oxidative stress responsive gene GCLC, while BPAF up-regulated the expression of CDKN1A and GADD45a. At concentrations relevant for human exposure (ng/mL range) BPA and its analogues as individual compounds and in mixtures did not exert genotoxic activity, whereas BPA and BPAF as well as the mixtures up-regulated the expressions of CYP1A1 and UGT1A1.
Collapse
Affiliation(s)
- Klara Hercog
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Sara Maisanaba
- Area of Toxicology, Department of Nutrition and Bromatology, Toxicology and Legal Medicine, Faculty of Pharmacy, University of Sevilla, Spain; Area of Toxicology, Department of Molecular Biology and Biochemistry Engineering, University Pablo de Olavide, Sevilla, Spain
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | | | - Lidija Kač
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Finlayson KA, Leusch FDL, van de Merwe JP. Primary green turtle (Chelonia mydas) skin fibroblasts as an in vitro model for assessing genotoxicity and oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 207:13-18. [PMID: 30502692 DOI: 10.1016/j.aquatox.2018.11.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Little is known about the effects of contaminants that accumulate in sea turtles. When in vivo exposure studies have ethical and logistical barriers, as is the case with sea turtles, in vitro tools can provide important information on the effects of contaminants. Several in vitro studies have assessed cytotoxicity of contaminants to sea turtles cells, however to gain a more refined mechanistic understanding of the effects of contaminants, sub-lethal effects also require investigation. Considering the complex mixture of contaminants that sea turtles are potentially exposed to, high throughput testing methods are necessary so that a large number of contaminants (and mixtures) can be rapidly tested. This study examined oxidative stress (reactive oxygen species production) and genotoxicity (micronucleus formation) in primary green turtle skin fibroblasts in response to 16 organic and inorganic contaminants found in coastal environments. Significant induction of oxidative stress was found with Cu, Co, Cr, and Hg. Significant effects on genotoxicity were found with Cu, Co, Cr, Hg, Pb and metolachlor. Effect concentrations from the bioassays were used in a simple risk assessment of turtles worldwide using accumulation values from the literature to identify populations at risk. Cu, Co, Cr and Hg were identified as posing the biggest threat to sea turtles. This study demonstrated the validity of using primary turtle cell cultures in the assessment of risk associated with a large number of contaminants using a high-throughput toxicity testing format.
Collapse
Affiliation(s)
- Kimberly A Finlayson
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia.
| | - Frederic D L Leusch
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Jason P van de Merwe
- Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
3
|
Peng C, Muthusamy S, Xia Q, Lal V, Denison MS, Ng JC. Micronucleus formation by single and mixed heavy metals/loids and PAH compounds in HepG2 cells. Mutagenesis 2015; 30:593-602. [DOI: 10.1093/mutage/gev021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
4
|
Hewitt NJ, Edwards RJ, Fritsche E, Goebel C, Aeby P, Scheel J, Reisinger K, Ouédraogo G, Duche D, Eilstein J, Latil A, Kenny J, Moore C, Kuehnl J, Barroso J, Fautz R, Pfuhler S. Use of Human In Vitro Skin Models for Accurate and Ethical Risk Assessment: Metabolic Considerations. Toxicol Sci 2013; 133:209-17. [DOI: 10.1093/toxsci/kft080] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Evaluation of chemicals requiring metabolic activation in the EpiDerm™ 3D human reconstructed skin micronucleus (RSMN) assay. Mutat Res 2012; 750:40-9. [PMID: 23022594 DOI: 10.1016/j.mrgentox.2012.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 07/25/2012] [Accepted: 08/30/2012] [Indexed: 01/28/2023]
Abstract
The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm™ is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123-131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48h was compared with an extended protocol involving three applications over 72h. Extending the treatment period to 72h changed the result significantly only for 4NQO, which was negative in the standard 48h dosing regimen, but positive with the 72h treatment. DMBA and CP were positive in the standard 48h assay (CP induced a more reproducible response with the 72h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48h and the 72h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48h treatment is negative or questionable is recommended.
Collapse
|
6
|
Senthilkumar PK, Robertson LW, Ludewig G. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK). Toxicol Appl Pharmacol 2011; 259:115-23. [PMID: 22210444 DOI: 10.1016/j.taap.2011.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/09/2011] [Accepted: 12/14/2011] [Indexed: 02/07/2023]
Abstract
Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism.
Collapse
Affiliation(s)
- P K Senthilkumar
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242-5000, USA
| | | | | |
Collapse
|
7
|
Götz C, Hewitt NJ, Jermann E, Tigges J, Kohne Z, Hübenthal U, Krutmann J, Merk HF, Fritsche E. Effects of the genotoxic compounds, benzo[a]pyrene and cyclophosphamide on phase 1 and 2 activities in EpiDerm™ models. Xenobiotica 2011; 42:526-37. [DOI: 10.3109/00498254.2011.643255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
The combined effects of BDE47 and BaP on oxidatively generated DNA damage in L02 cells and the possible molecular mechanism. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 721:192-8. [DOI: 10.1016/j.mrgentox.2011.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 01/02/2011] [Accepted: 02/05/2011] [Indexed: 12/31/2022]
|
9
|
Gelhaus SL, Harvey RG, Penning TM, Blair IA. Regulation of benzo[a]pyrene-mediated DNA- and glutathione-adduct formation by 2,3,7,8-tetrachlorodibenzo-p-dioxin in human lung cells. Chem Res Toxicol 2010; 24:89-98. [PMID: 21028851 PMCID: PMC3021323 DOI: 10.1021/tx100297z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Environmental carcinogens, such as polycyclic aromatic hydrocarbons (PAHs), require metabolic activation to DNA-reactive metabolites in order to exert their tumorigenic effects. Benzo[a]pyrene (B[a]P), a prototypic PAH, is metabolized by cytochrome P450 (P450) 1A1/1B1 and epoxide hydrolase to (-)-B[a]P-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol). B[a]P-7,8-dihydrodiol then undergoes further P4501A1/1B1-mediated metabolism to the ultimate carcinogen, (+)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydro-B[a]P (B[a]PDE), which forms DNA-adducts primarily with 2'-deoxyguanosine (dGuo) to form (+)-anti-trans-B[a]PDE-N(2)-dGuo (B[a]PDE-dGuo) in DNA. Pretreatment of cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is known to induce P4501A1/1B1 mRNA expression through the aryl hydrocarbon receptor (AhR) pathway. This causes increased B[a]PDE-dGuo formation in liver cells. In contrast, TCDD induction of H358 lung cells surprisingly caused a decrease in (-)-B[a]P-7,8-dihydrodiol-mediated (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. Furthermore, treatment of the TCDD-induced cells with (±)-B[a]PDE also resulted in decreased (+)-B[a]PDE-dGuo adduct formation when compared with the non-TCDD-induced cells. These data suggested that it was a detoxification pathway that had been up-regulated rather than an activation pathway that had been down-regulated. LC-MS was used to analyze B[a]PDE-dGuo and B[a]PDE-GSH-adducts in H358 lung and HepG2 liver cells. There was a significant increase in the (-)-B[a]PDE-GSH-adduct with high enantiomeric excess after treatment of the TCDD-induced H358 cells with (±)-B[a]PDE when compared with the noninduced cells. This could explain why increased activation of (-)-B[a]P-7,8-dihydrodiol through TCDD up-regulation of P4501A1/1B1 did not lead to increased (+)-B[a]PDE-dGuo adducts in the H358 lung cells. In addition, TCDD did not induce B[a]PDE-GSH-adduct formation in HepG2 liver cells. (±)-B[a]PDE-GSH-adducts were formed at much lower levels in both TCDD-induced and noninduced HepG2 cells when compared with (-)-B[a]PDE-GSH-adducts in the H358 lung cells. Therefore, our study has revealed that there is a subtle balance between activation and detoxification of B[a]P in lung-derived compared with liver-derived cells and that this determines how much DNA damage occurs.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6610, USA
| | | | | | | |
Collapse
|
10
|
Katic J, Cemeli E, Baumgartner A, Laubenthal J, Bassano I, Stølevik SB, Granum B, Namork E, Nygaard UC, Løvik M, Leeuwen DV, Loock KV, Anderson D, Fučić A, Decordier I. Evaluation of the genotoxicity of 10 selected dietary/environmental compounds with the in vitro micronucleus cytokinesis-block assay in an interlaboratory comparison. Food Chem Toxicol 2010; 48:2612-23. [DOI: 10.1016/j.fct.2010.06.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/10/2010] [Accepted: 06/17/2010] [Indexed: 02/02/2023]
|
11
|
Pessah IN, Cherednichenko G, Lein PJ. Minding the calcium store: Ryanodine receptor activation as a convergent mechanism of PCB toxicity. Pharmacol Ther 2010; 125:260-85. [PMID: 19931307 PMCID: PMC2823855 DOI: 10.1016/j.pharmthera.2009.10.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 10/30/2009] [Indexed: 11/24/2022]
Abstract
Chronic low-level polychlorinated biphenyl (PCB) exposures remain a significant public health concern since results from epidemiological studies indicate that PCB burden is associated with immune system dysfunction, cardiovascular disease, and impairment of the developing nervous system. Of these various adverse health effects, developmental neurotoxicity has emerged as a particularly vulnerable endpoint in PCB toxicity. Arguably the most pervasive biological effects of PCBs could be mediated by their ability to alter the spatial and temporal fidelity of Ca2+ signals through one or more receptor-mediated processes. This review will focus on our current knowledge of the structure and function of ryanodine receptors (RyRs) in muscle and nerve cells and how PCBs and related non-coplanar structures alter these functions. The molecular and cellular mechanisms by which non-coplanar PCBs and related structures alter local and global Ca2+ signaling properties and the possible short and long-term consequences of these perturbations on neurodevelopment and neurodegeneration are reviewed.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|