1
|
Farhadi S, Bahreyni-Toossi MT, Zafari-Ghadim N, Khademi S, Sadat-Darbandi M, Azimian H. DNA double-strand break repair and adaptive responses of low-dose radiation in normal and tumor lung cell lines. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 881:503528. [PMID: 36031334 DOI: 10.1016/j.mrgentox.2022.503528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The adaptive response (AR), which can be induced by low-dose ionizing radiation (LD), may influence the therapeutic ratio of cancer treatment. We investigated the AR and the DNA double-strand break (DSB) repair pathway in human lung tumor cells and normal cells. We measured viability and proliferation of normal lung cells (MRC-5) and lung cancer cells (QU-DB) using the MTT and colony formation assays. Flow cytometric analysis of γ-H2AX was used to measure DNA-DSBs induction, repair, and residual damages. AR was seen in the normal cells but not in the cancer cells. Our findings suggest that LD stimulates DSB repair and that this may contribute to distinctive AR in normal vs. cancer cells.
Collapse
Affiliation(s)
- Sonia Farhadi
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | | | - Navid Zafari-Ghadim
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sara Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahdi Sadat-Darbandi
- Department of Medical Physics, Reza Radiotherapy and Oncology Center, Mashhad, Iran.
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Calabrese EJ. Hormesis and embryonic stem cells. Chem Biol Interact 2021; 352:109783. [PMID: 34932953 DOI: 10.1016/j.cbi.2021.109783] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023]
Abstract
This paper provides an identification and detailed assessment of hormetic dose responses of embryonic stem cells (ESCs) with particular emphasis on cell renewal (proliferation) and differentiation, underlying mechanistic foundations and potential therapeutic implications. Hormetic dose responses were commonly reported, being induced by a broad range of chemicals, including pharmaceuticals (e.g., atorvastatin, isoproterenol, lithium, nicotine, ouabain), dietary supplements (e.g., curcumin, multiple ginsenosides, resveratrol), endogenous agents (e.g., estrogen, hydrogen peroxide, melatonin), and physical stressor agents (e.g., hypoxia, ionizing radiation). ESC-hormetic dose responses are similar for other stem cell types (e.g., adipose-derived stem cells, apical papilla, bone marrow stem cells, dental pulp stem cells, endothelial stem cells, muscle stem cells, periodontal ligament stem cells, neural stem cells), indicating a high degree of generality for the hormetic-stem cells response. The widespread occurrence of hormetic dose responses shown by ESCs and other stem cells suggests that the hormetic dose response may represent a fundamental and highly conserved evolutionary strategy.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
3
|
Qi L, Li J, Le W, Zhang J. Low-dose ionizing irradiation triggers apoptosis of undifferentiated spermatogonia in vivo and in vitro. Transl Androl Urol 2019; 8:591-600. [PMID: 32038955 DOI: 10.21037/tau.2019.10.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The present study aimed to investigate the mechanism of low-dose ionizing radiation (IR) induced apoptosis of undifferentiated spermatogonia in vivo and in vitro. Methods Following 50 mGy IR, testicular tissues were collected from the adult DBA/2 mice at 1, 2 and 24 h; mice in the control group received pseudo-irradiation. Immunofluorescence (IF) staining and TUNEL were performed to assess DNA damage and apoptosis, respectively, in the irradiated testicular tissues. Furthermore, the spermatogonia were also irradiated in vitro, and the expression of apoptosis-related proteins was detected by Western blotting. TUNEL and flow cytometry were applied to assess cell apoptosis. Results γH2AX (a marker of DNA damage) was up-regulated in the seminiferous tubules at 1 and 2 h after IR, but it was reduced following the DNA repair. This was consistent with the finding that apoptosis of germline cells was present in the seminiferous tubules after IR, especially at 1 h (IF and TUNEL). Apoptosis was also present in the PLZF(+) spermatogonia, particularly at 1 h after IR. Apoptotic cells decreased with the increase in DNA repair time after IR. Moreover, the caspase-3 protein was expressed in the undifferentiated spermatogonia following IR. The expression of caspase-3, P53, Ku70 and DNA-PKcs in the cultured spermatogonia was also up-regulated following IR in vitro, but their expression decreased gradually over time after IR, which was supported by the findings from flow cytometry, and the apoptosis of spermatogonia peaked at 24 h post IR. Conclusions IR may induce the apoptosis of spermatogonia at early stage in vivo, but the apoptosis of spermatogonia secondary to IR occurs at a relatively later time point (24 h) in vitro mainly. The apoptosis of spermatogonia is improved over time after IR.
Collapse
Affiliation(s)
- Lixin Qi
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiaxuan Li
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Wei Le
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jinfu Zhang
- Department of Urology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China.,Department of Urology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200050, China
| |
Collapse
|
4
|
Squillaro T, Galano G, De Rosa R, Peluso G, Galderisi U. Concise Review: The Effect of Low-Dose Ionizing Radiation on Stem Cell Biology: A Contribution to Radiation Risk. Stem Cells 2018; 36:1146-1153. [PMID: 29664142 DOI: 10.1002/stem.2836] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tiziana Squillaro
- Department of Experimental Medicine; Campania University “Luigi Vanvitelli,”; Naples Italy
| | | | | | - Gianfranco Peluso
- Institute of Agro-Environmental and Forest Biology, CNR; Naples Italy
| | - Umberto Galderisi
- Department of Experimental Medicine; Campania University “Luigi Vanvitelli,”; Naples Italy
- Institute of Agro-Environmental and Forest Biology, CNR; Naples Italy
- Genome and Stem Cell Center (GENKOK), Erciyes University; Kayseri Turkey
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University; Philadelphia Pennsylvania USA
| |
Collapse
|
5
|
Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study. Oncotarget 2018; 8:36614-36627. [PMID: 28402271 PMCID: PMC5482681 DOI: 10.18632/oncotarget.16625] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.
Collapse
|
6
|
Abstract
PURPOSE Despite decades of research into radiation-induced adaptive responses, where prior irradiation changes the response to subsequent irradiations, the field of radiation oncology relies upon models of tumor control that assume that each radiation therapy fraction reproduces the same effect, known as iso-effect per fraction. Can these radiobiology principles both be true, forming a paradox or is only one of them right? Here, the apparent coexistence of these two contradictory observations is considered, examining how adaptive responses might apply in radiotherapy scenarios that are inconsistent with the majority of adaptive response experimental designs. CONCLUSION While the iso-effect per fraction assumption would preclude the observation of adaptive responses for cells survival after radiotherapy fractions, this does not preclude the observation of adaptive responses for other endpoints. Adaptive responses for cell survival might also manifest without invalidating the iso-effect principle in practical terms. It may also be the case that instances of both phenomena can be observed under different conditions, but not at the same time.
Collapse
Affiliation(s)
- Benjamin J Blyth
- a Radiation Oncology and Cancer Imaging , Peter MacCallum Cancer Centre , Melbourne , Australia.,b Cancer Research Division , Peter MacCallum Cancer Centre , Melbourne , Australia
| |
Collapse
|
7
|
Preconditioning is hormesis part I: Documentation, dose-response features and mechanistic foundations. Pharmacol Res 2016; 110:242-264. [DOI: 10.1016/j.phrs.2015.12.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/16/2022]
|
8
|
Park HS, You GE, Yang KH, Kim JY, An S, Song JY, Lee SJ, Lim YK, Nam SY. Role of AKT and ERK pathways in controlling sensitivity to ionizing radiation and adaptive response induced by low-dose radiation in human immune cells. Eur J Cell Biol 2015; 94:653-60. [DOI: 10.1016/j.ejcb.2015.08.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/13/2015] [Accepted: 08/24/2015] [Indexed: 11/29/2022] Open
|
9
|
Zhao Y, Zhong R, Sun L, Jia J, Ma S, Liu X. Ionizing radiation-induced adaptive response in fibroblasts under both monolayer and 3-dimensional conditions. PLoS One 2015; 10:e0121289. [PMID: 25807079 PMCID: PMC4373882 DOI: 10.1371/journal.pone.0121289] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023] Open
Abstract
To observe the adaptive response (AR) induced by ionizing radiation in human fibroblasts under monolayer and 3-dimensional (3-D) condition. Three kinds of fibroblasts were cultured under both monolayer and 3-D condition. Immunofluorescent staining was used to detect the γ-H2AX foci and the morphological texture. Trypan blue staining was used to detect the cell death. Western blot was used to detect the expressions of γ-H2AX, p53 and CDKN1A/p21 (p21). We found that DNA damage increased in a dose-dependent and time-dependent manner after high doses of radiation. When cells were pretreated with a priming low dose of radiation followed by high dose radiation, DNA damage was attenuated under both monolayer and 3-D condition, and the adaptive response (AR) was induced. Additionally, the morphology of cells under monolayer and 3-D conditions were different, and radiation also induced AR according to morphological texture analysis. Priming low dose radiation induced AR both under monolayer and 3-D condition. Interestingly, 3-D microenvironment made cells more sensitive to radiation. The expression of p53 and p21 was changed and indicated that they might participate in the regulation of AR.
Collapse
Affiliation(s)
- Yinlong Zhao
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- Dept. Nuclear Medicine, 2nd Hospital Jilin University, Changchun, China
| | - Rui Zhong
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
| | - Liguang Sun
- Dept. Translational Medicine, 1st Hospital Jilin University, Changchun, China
| | - Jie Jia
- Dept. Ultrasound, China-Japan Union Hospital, Changchun, China
| | - Shumei Ma
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- * E-mail: (SM); (XL)
| | - Xiaodong Liu
- Key Laboratory of Radiobiology (Ministry of Health), School of Public Health, Jilin University, Changchun, China
- * E-mail: (SM); (XL)
| |
Collapse
|