1
|
Wójcik E, Kot E, Wójcik I, Wysokińska A, Matusevičius P. Genomic Instability in the Lymphocytes of Dogs with Squamous Cell Carcinoma. Animals (Basel) 2024; 14:2754. [PMID: 39409703 PMCID: PMC11476004 DOI: 10.3390/ani14192754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Genome instability is a characteristic trait of tumours and includes changes in DNA and in chromosomes. The aim of the study was to identify chromosome damage using the sister chromatid exchange assay and DNA fragmentation by the comet assay in dogs with cancer, as well as to determine the suitability of these techniques for the assessment of chromatin stability in healthy and sick dogs. The assays identified genomic instabilities in dogs with cancer (squamous cell carcinoma) and in healthy dogs. The genetic assays are very sensitive and can be used as biomarkers of normal DNA replication and repair potential and the maintenance of control over the entire cell cycle. The use of the cytogenetic tests will enable the more precise assessment of genome stability and integrity in animals and make it possible to determine the number of chromosomal instabilities generated in a given individual, which can be indicative of its health status. The identification of instabilities can be used in routine diagnostic examination in dogs with cancer for more accurate diagnosis and prognosis.
Collapse
Affiliation(s)
- Ewa Wójcik
- Institute of Animal Science and Fisheries, University of Siedlce, 08-110 Siedlce, Poland; (E.K.); (I.W.); (A.W.)
| | - Emilia Kot
- Institute of Animal Science and Fisheries, University of Siedlce, 08-110 Siedlce, Poland; (E.K.); (I.W.); (A.W.)
| | - Iga Wójcik
- Institute of Animal Science and Fisheries, University of Siedlce, 08-110 Siedlce, Poland; (E.K.); (I.W.); (A.W.)
| | - Anna Wysokińska
- Institute of Animal Science and Fisheries, University of Siedlce, 08-110 Siedlce, Poland; (E.K.); (I.W.); (A.W.)
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, LT-47181 Kaunas, Lithuania;
| |
Collapse
|
2
|
Hegedus C, Andronie L, Uiuiu P, Jurco E, Lazar EA, Popescu S. Pets, Genuine Tools of Environmental Pollutant Detection. Animals (Basel) 2023; 13:2923. [PMID: 37760323 PMCID: PMC10525180 DOI: 10.3390/ani13182923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human-pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today's society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use.
Collapse
Affiliation(s)
- Cristina Hegedus
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Luisa Andronie
- Department of Biophysics, Meteorology and Climatology, Faculty of Forestry and Cadastre, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania
| | - Paul Uiuiu
- Department of Fundamental Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eugen Jurco
- Department of Technological Sciences, Faculty of Animal Sciences and Biotechnologies, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Eva Andrea Lazar
- Association for the Welfare of Horses, 725700 Vatra Dornei, Romania;
| | - Silvana Popescu
- Department of Animal Hygiene and Welfare, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Grigolato R, Accorona R, Lombardo G, Corrocher G, Garagiola U, Massari F, Nicoli S, Rossi S, Calabrese L. Oral cancer in non-smoker non-drinker patients. Could comparative pet oncology help to understand risk factors and pathogenesis? Crit Rev Oncol Hematol 2021; 166:103458. [PMID: 34461267 DOI: 10.1016/j.critrevonc.2021.103458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
During the last decades there has been a progressive increase in proportion of incidence of oral cancer not related to a known etiologic factor, such as the so-called "oral cancer in young", a relevant tumor in non-smoker non-drinker (NSND) patients. The topic is matter of long standing debate, and adequate study models to analyze this entity are lacking. Spontaneous oral cancer in companion animals such as dogs and cats, presents more clinical and biological similarities with the human oral cancer than any other animal model. In our review we analyze how the study of spontaneous oral cancer in common pets can prospectively prove to be of double usefulness in unraveling the question about the origin of oral cancer in NSND patients, allowing both the analysis of environmental and behavioral risk factors, and the study of how carcinogenic viruses, chronic inflammation, and changes in immunity can influence pre-tumoral and tumoral microenvironment.
Collapse
Affiliation(s)
- Roberto Grigolato
- Division of Otorhinolaryngology, "San Maurizio" Hospital, Bolzano, Italy
| | - Remo Accorona
- Department of Otorhinolaryngology - Head and Neck Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy.
| | - Giorgio Lombardo
- School of Dentistry, Department of Surgery, Dentistry, Pediatrics, and Gynecology (DIPSCOMI), University of Verona, Verona, Italy
| | - Giovanni Corrocher
- School of Dentistry, Department of Surgery, Dentistry, Pediatrics, and Gynecology (DIPSCOMI), University of Verona, Verona, Italy
| | - Umberto Garagiola
- Biomedical, Surgical and Dental Sciences Department, Maxillofacial and Odontostomatology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | | | | | - Sabrina Rossi
- Department of Oncology and Hematology, Humanitas Cancer Center, Rozzano, Milano, Italy
| | - Luca Calabrese
- Division of Otorhinolaryngology, "San Maurizio" Hospital, Bolzano, Italy
| |
Collapse
|
4
|
Gajski G, Žegura B, Ladeira C, Novak M, Sramkova M, Pourrut B, Del Bo' C, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales - (Part 2 Vertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:130-164. [PMID: 31416573 DOI: 10.1016/j.mrrev.2019.04.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/26/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022]
Abstract
The comet assay has become one of the methods of choice for the evaluation and measurement of DNA damage. It is sensitive, quick to perform and relatively affordable for the evaluation of DNA damage and repair at the level of individual cells. The comet assay can be applied to virtually any cell type derived from different organs and tissues. Even though the comet assay is predominantly used on human cells, the application of the assay for the evaluation of DNA damage in yeast, plant and animal cells is also quite high, especially in terms of biomonitoring. The present extensive overview on the usage of the comet assay in animal models will cover both terrestrial and water environments. The first part of the review was focused on studies describing the comet assay applied in invertebrates. The second part of the review, (Part 2) will discuss the application of the comet assay in vertebrates covering cyclostomata, fishes, amphibians, reptiles, birds and mammals, in addition to chordates that are regarded as a transitional form towards vertebrates. Besides numerous vertebrate species, the assay is also performed on a range of cells, which includes blood, liver, kidney, brain, gill, bone marrow and sperm cells. These cells are readily used for the evaluation of a wide spectrum of genotoxic agents both in vitro and in vivo. Moreover, the use of vertebrate models and their role in environmental biomonitoring will also be discussed as well as the comparison of the use of the comet assay in vertebrate and human models in line with ethical principles. Although the comet assay in vertebrates is most commonly used in laboratory animals such as mice, rats and lately zebrafish, this paper will only briefly review its use regarding laboratory animal models and rather give special emphasis to the increasing usage of the assay in domestic and wildlife animals as well as in various ecotoxicological studies.
Collapse
Affiliation(s)
- Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Carina Ladeira
- H&TRC - Health & Technology Research Center, Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Lisbon, Portugal; Centro de Investigação e Estudos em Saúde de Publica, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Monika Sramkova
- Biomedical Research Center, Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bertrand Pourrut
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Cristian Del Bo'
- DeFENS-Division of Human Nutrition, University of Milan, Milan, Italy
| | - Mirta Milić
- Mutagenesis Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Solange Costa
- Environmental Health Department, National Health Institute Dr. Ricardo Jorge, Porto, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU - Norwegian Institute for Air Research, Kjeller, Norway
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | - Andrew Collins
- Department of Nutrition, University of Oslo, Oslo, Norway
| |
Collapse
|