1
|
Tabari F, Patron C, Cryer H, Johari K. HD-tDCS over left supplementary motor area differentially modulated neural correlates of motor planning for speech vs. limb movement. Int J Psychophysiol 2024; 201:112357. [PMID: 38701898 DOI: 10.1016/j.ijpsycho.2024.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
The supplementary motor area (SMA) is implicated in planning, execution, and control of speech production and limb movement. The SMA is among putative generators of pre-movement EEG activity which is thought to be neural markers of motor planning. In neurological conditions such as Parkinson's disease, abnormal pre-movement neural activity within the SMA has been reported during speech production and limb movement. Therefore, this region can be a potential target for non-invasive brain stimulation for both speech and limb movement. The present study took an initial step in examining the application of high-definition transcranial direct current stimulation (HD-tDCS) over the left SMA in 24 neurologically intact adults. Subsequently, event-related potentials (ERPs) were recorded while participants performed speech and limb movement tasks. Participants' data were collected in three counterbalanced sessions: anodal, cathodal and sham HD-tDCS. Relative to sham stimulation, anodal, but not cathodal, HD-tDCS significantly attenuated ERPs prior to the onset of the speech production. In contrast, neither anodal nor cathodal HD-tDCS significantly modulated ERPs prior to the onset of limb movement compared to sham stimulation. These findings showed that neural correlates of motor planning can be modulated using HD-tDCS over the left SMA in neurotypical adults, with translational implications for neurological conditions that impair speech production. The absence of a stimulation effect on ERPs prior to the onset of limb movement was not expected in this study, and future studies are warranted to further explore this effect.
Collapse
Affiliation(s)
- Fatemeh Tabari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Celeste Patron
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Hope Cryer
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA
| | - Karim Johari
- Human Neurophysiology and Neuromodulation Lab, Communication Sciences and Disorders, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
2
|
Barbé L, Lam S, Holub A, Faghihmonzavi Z, Deng M, Iyer R, Finkbeiner S. AutoComet: A fully automated algorithm to quickly and accurately analyze comet assays. Redox Biol 2023; 62:102680. [PMID: 37001328 PMCID: PMC10090439 DOI: 10.1016/j.redox.2023.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/16/2023] Open
Abstract
DNA damage is a common cellular feature seen in cancer and neurodegenerative disease, but fast and accurate methods for quantifying DNA damage are lacking. Comet assays are a biochemical tool to measure DNA damage based on the migration of broken DNA strands towards a positive electrode, which creates a quantifiable 'tail' behind the cell. However, a major limitation of this approach is the time needed for analysis of comets in the images with available open-source algorithms. The requirement for manual curation and the laborious pre- and post-processing steps can take hours to days. To overcome these limitations, we developed AutoComet, a new open-source algorithm for comet analysis that utilizes automated comet segmentation and quantification of tail parameters. AutoComet first segments and filters comets based on size and intensity and then filters out comets without a well-connected head and tail, which significantly increases segmentation accuracy. Because AutoComet is fully automated, it minimizes curator bias and is scalable, decreasing analysis time over ten-fold, to less than 3 s per comet. AutoComet successfully detected statistically significant differences in tail parameters between cells with and without induced DNA damage, and was more comparable to the results of manual curation than other open-source software analysis programs. We conclude that the AutoComet algorithm provides a fast, unbiased and accurate method to quantify DNA damage that avoids the inherent limitations of manual curation and will significantly improve the ability to detect DNA damage.
Collapse
Affiliation(s)
- Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Austin Holub
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Minnie Deng
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Rajshri Iyer
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, Gladstone Institutes, 1650 Owens Street, San Francisco, CA, 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
3
|
Dirven Y, Eide DM, Henriksson EW, Hjorth R, Sharma AK, Graupner A, Brunborg G, Ballangby J, Boisen AMZ, Swedmark S, Gützkow KB, Olsen AK. Assessing testicular germ cell DNA damage in the comet assay; introduction of a proof-of-concept. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:88-104. [PMID: 36629742 DOI: 10.1002/em.22527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The in vivo comet assay is widely used to measure genotoxicity; however, the current OECD test guideline (TG 489) does not recommend using the assay to assess testicular germ cells, due to the presence of testicular somatic cells. An adapted approach to specifically assess testicular germ cells within the comet assay is certainly warranted, considering regulatory needs for germ cell-specific genotoxicity data in relation to the increasing global production of and exposure to potentially hazardous chemicals. Here, we provide a proof-of-concept to selectively analyze round spermatids and primary spermatocytes, distinguishing them from other cells of the testicle. Utilizing the comet assay recordings of DNA content (total fluorescence intensity) and DNA damage (% tail intensity) of individual comets, we developed a framework to distinguish testicular cell populations based on differences in DNA content/ploidy and appearance. Haploid round spermatid comets are identified through (1) visual inspection of DNA content distributions, (2) setting DNA content thresholds, and (3) modeling DNA content distributions using a normal mixture distribution function. We also describe an approach to distinguish primary spermatocytes during comet scoring, based on their high DNA content and large physical size. Our concept allows both somatic and germ cells to be analyzed in the same animal, adding a versatile, sensitive, rapid, and resource-efficient assay to the limited genotoxicity assessment toolbox for germ cells. An adaptation of TG 489 facilitates accumulation of valuable information regarding distribution of substances to germ cells and their potential for inducing germ cell gene mutations and structural chromosomal aberrations.
Collapse
Affiliation(s)
- Yvette Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Dag Markus Eide
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Erika Witasp Henriksson
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Proposals for Classification and Restriction, Sundbyberg, Sweden
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Rune Hjorth
- The Danish Environmental Protection Agency, Odense, Denmark
| | - Anoop Kumar Sharma
- Technical University of Denmark, National Food Institute, Lyngby, Denmark
| | - Anne Graupner
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Gunnar Brunborg
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Jarle Ballangby
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | | | - Stellan Swedmark
- Swedish Chemicals Agency, Department of Development of Legislation and Other Instruments, Unit of Evaluation of Substances, Sundbyberg, Sweden
| | - Kristine Bjerve Gützkow
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| | - Ann-Karin Olsen
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
- Centre for Environmental Radioactivity (CERAD, Centre of Excellence of the Norwegian Research Council), Oslo, Norway
| |
Collapse
|
4
|
Ali K, Iqbal A, Bukhari SM, Safdar S, Raiz A, Ali W, Hussain A, Javid A, Hussain M, Ali MM, Mahmud A, Iqbal MJ, Nasir MF, Mubeen I, Kanwal S, Sughra F, Khattak A, Saleem M. Amelioration potential of Moringa oleifera extracts against sodium arsenate induced embryotoxicity and genotoxicity in mouse (Mus musculus). BRAZ J BIOL 2021; 83:e248022. [PMID: 34468531 DOI: 10.1590/1519-6984.248022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Previous studies have suggested that arsenic crosses the placenta and affects the fetus development. The study under consideration aims to show comparative ameliorative effect of Moringa oleifera leaf and flower extracts against sodium arsenate induced fetus toxicity of mice. Pregnant mice (N=44) were kept in lab and divided into eleven group from (A to K) and were orally administered the doses 6 mg/kg, 12 mg/kg for sodium arsenate, 150 mg/kg and 300 mg/kg for Moringa oleifera leaf extracts (MOLE) and 150 mg/kg and 300 mg/kg for Moringa oleifera flower extracts (MOFE) comparing with control. The investigation revealed evident reduction in the fetuses weight, hind limb, fore limb, tail and snout length, crown rump and head circumferences well as malformations in tail, feet, arms, legs, skin and eyes in the negative control group (only administered with sodium arsenate). Co-administration of sodium arsenate with MOLE and MOFE ameliorate the reversed effect of sodium arsenate on the shape, length, body weight and DNA damage of fetus significantly at 95% confidence interval. However, Moringa oleifera leaf extract showed more significant results in comparison to Moringa oleifera flower extract. Hence concluded that Moringa oleifera leaf extract ameliorated the embryo toxic effects of sodium arsenate and can be used against environmental teratogens.
Collapse
Affiliation(s)
- K Ali
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Iqbal
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - S M Bukhari
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - S Safdar
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Raiz
- Department of Zoology, GC Women University, Faisalabad, Pakistan
| | - W Ali
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Hussain
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - A Javid
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - M Hussain
- University of Veterinary & Animal Sciences, Department of Wildlife & Ecology, Lahore, Pakistan
| | - M M Ali
- University of Veterinary & Animal Sciences, Institute of Biochemistry and Biotechnology, Lahore, Pakistan
| | - A Mahmud
- University of Veterinary & Animal Sciences, Department of Poultry Production, Lahore, Pakistan
| | - M J Iqbal
- Bahauddin Zakariya University, Department of Zoology, Multan, Pakistan
| | - M F Nasir
- Bahauddin Zakariya University, Department of Zoology, Multan, Pakistan
| | - I Mubeen
- Government College University, Department of Zoology, Lahore, Pakistan
| | - S Kanwal
- University of Okara, Department of Zoology, Okara, Pakistan
| | - F Sughra
- University of Education, Department of Zoology, Division of Science & Technology, Lahore, Pakistan
| | - A Khattak
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, Pakistan
| | - M Saleem
- Department of Zoology, Virtual University of Lahore, Lahore, Pakistan
| |
Collapse
|
5
|
Statistical analysis of in vivo alkaline comet assay data - Comparison of median and geometric mean as centrality measures. Regul Toxicol Pharmacol 2020; 118:104808. [PMID: 33127357 DOI: 10.1016/j.yrtph.2020.104808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 11/20/2022]
Abstract
The comet assay is one of the standard tests for evaluating the genotoxic potential of a test item able to detect DNA strand breaks in cells or isolated nuclei from various tissues. The in vivo alkaline comet assay is part of the standard test battery, given in option 2 of the ICH guidance S2 (R1) and a follow-up test in the EFSA framework on genotoxicity testing. The current OECD guideline for the testing of chemicals No. 489 directly affects the statistical analysis of comet data as it suggests using the median per slide and the mean of all medians per animal. However, alternative approaches can be used if scientifically justified. In this work, we demonstrated that the selection of different centrality measures to describe an average value per slide may lead to fundamentally different statistical test results and contradicting interpretations. Our focus was on geometric means and medians per slide for the primary endpoint "tail intensity". We compared both strategies using original and simulated data in different experimental settings incl. a varying number of animals, slides and cells per slide. In general, it turned out that the chosen centrality measure has an immense impact on the final statistical test result.
Collapse
|
6
|
Koppen G, Azqueta A, Pourrut B, Brunborg G, Collins AR, Langie SAS. The next three decades of the comet assay: a report of the 11th International Comet Assay Workshop. Mutagenesis 2017; 32:397-408. [DOI: 10.1093/mutage/gex002] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gudrun Koppen
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, and IdiSNA, Navarra Institute for Health Research, C/Irunlarrea 1, 31009 Pamplona, Spain,
| | - Bertrand Pourrut
- ISA Lille – LGCgE, University of Lille Nord de France, 48 boulevard Vauban, 59046 Lille, France,
| | - Gunnar Brunborg
- Department of Molecular Biology, Norwegian Institute of Public Health, PO Box 4404 Nydalen, Oslo, Norway and
| | - Andrew R. Collins
- Department of Nutrition, University of Oslo, PB 1046 Blindern, Oslo, Norway
| | - Sabine A. S. Langie
- Environmental Risk and Health unit, Flemish Institute of Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium,
| |
Collapse
|
7
|
Georgieva M, Rashydov NM, Hajduch M. DNA damage, repair monitoring and epigenetic DNA methylation changes in seedlings of Chernobyl soybeans. DNA Repair (Amst) 2017; 50:14-21. [PMID: 28017527 DOI: 10.1016/j.dnarep.2016.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 12/12/2022]
Abstract
This pilot study was carried out to assess the effect of radio-contaminated Chernobyl environment on plant genome integrity 27 years after the accident. For this purpose, nuclei were isolated from root tips of the soybean seedlings harvested from plants grown in the Chernobyl area for seven generations. Neutral, neutral-alkaline, and methylation-sensitive comet assays were performed to evaluate the induction and repair of primary DNA damage and the epigenetic contribution to stress adaptation mechanisms. An increased level of single and double strand breaks in the radio-contaminated Chernobyl seedlings at the stage of primary root development was detected in comparison to the controls. However, the kinetics of the recovery of DNA breaks of radio-contaminated Chernobyl samples revealed that lesions were efficiently repaired at the stage of cotyledon. Methylation-sensitive comet assay revealed comparable levels in the CCGG methylation pattern between control and radio-contaminated samples with a slight increase of approximately 10% in the latter ones. The obtained preliminary data allow us to speculate about the onset of mechanisms providing an adaptation potential to the accumulated internal irradiation after the Chernobyl accident. Despite the limitations of this study, we showed that comet assay is a sensitive and flexible technique which can be efficiently used for genotoxic screening of plant specimens in natural and human-made radio-contaminated areas, as well as for safety monitoring of agricultural products.
Collapse
Affiliation(s)
- Mariyana Georgieva
- Department of Reproduction and Developmental Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia; Department of Molecular Biology and Genetics, Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Namik M Rashydov
- Department of Biophysics and Radiobiology, Institute of Cell Biology and Genetic Engineering, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Martin Hajduch
- Department of Reproduction and Developmental Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| |
Collapse
|
8
|
Wiewel BV, Lamoree M. Geotextile composition, application and ecotoxicology-A review. JOURNAL OF HAZARDOUS MATERIALS 2016; 317:640-655. [PMID: 27283344 DOI: 10.1016/j.jhazmat.2016.04.060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/05/2016] [Accepted: 04/23/2016] [Indexed: 06/06/2023]
Abstract
Geosynthetics is the umbrella term for thin, flexible material sheets applied in civil and environmental engineering, of which geotextiles form the largest group. Most geotextiles consist of a polymer from the polyolefin, polyester or polyamide family, and additives to improve their stability. The polymer may degrade into microplastic particles over time and under various conditions and can cause adverse effects, as species may ingest these particles or encounter adverse effects due to the interference of the particles with e.g. their photosynthesis system in the case of algae. Leaching of additives may occur from the intact material, as they are often not covalently bound to the polymer backbone, but is greatly enhanced when micro-sized plastic particles have been formed. A total of 42 polymer additives were identified, of which 26 had ecotoxicity information available in terms of a REACH persistence, toxicity and bioaccumulation (PBT) assessment. Of these, 15 were classified as (very) persistent and 2 as toxic. A survey to assess potential toxicity of the remaining 16 substances revealed that no ecotoxicity studies had been performed on 13 of these compounds. For 3 compounds, other toxicity data was found, as well as of several chemical groups known to be used as additives in geotextiles. The current knowledge is thus lacking in two domains: on the one hand, ecotoxicity data is scarce as many substances have not yet been the subject of ecotoxicological studies. On the other hand, in situ toxic effects might be missed by the current approach of single compound toxicity testing. Moreover, environmental occurrence data of the additives are extremely scarce.
Collapse
Affiliation(s)
- Barbara Vé Wiewel
- Institute for Environmental Studies (IVM), VU University Amsterdam, De Boelelaan 1087, 1081HV Amsterdam, The Netherlands
| | - Marja Lamoree
- Institute for Environmental Studies (IVM), VU University Amsterdam, De Boelelaan 1087, 1081HV Amsterdam, The Netherlands.
| |
Collapse
|