1
|
LIU F, WEI Y, WANG Z. β-D-Glucan promotes NF-κB activation and ameliorates high-LET carbon-ion irradiation-induced human umbilical vein endothelial cell injury. Turk J Med Sci 2023; 53:1621-1634. [PMID: 38813508 PMCID: PMC10760591 DOI: 10.55730/1300-0144.5731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/12/2023] [Accepted: 09/21/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Heavy-ion irradiation seriously perturbs cellular homeostasis and thus damages cells. Vascular endothelial cells (ECs) play an important role in the pathological process of radiation damage. Protecting ECs from heavy-ion radiation is of great significance in the radioprotection of normal tissues. In this study, the radioprotective effect of β-D-glucan (BG) derived from Saccharomyces cerevisiae on human umbilical vein endothelial cell (EA.hy926) cytotoxicity produced by carbon-ion irradiation was examined and the probable mechanism was established. Materials and methods EA.hy926 cells were divided into seven groups: a control group; 1, 2, or 4 Gy radiation; and 10 μg/mL BG pretreatment for 24 h before 1, 2, or 4 Gy irradiation. Cell survival was assessed by colony formation assay. Cell cycles, apoptosis, DNA damage, and reactive oxygen species (ROS) levels were measured through flow cytometry. The level of malondialdehyde and antioxidant enzyme activities were analyzed using assay kits. The activation of NF-κB was analyzed using western blotting and a transcription factor assay kit. The expression of downstream target genes was detected by western blotting. Results BG pretreatment significantly increased the survival of irradiated cells, improved cell cycle progression, and decreased DNA damage and apoptosis. The levels of ROS and malondialdehyde were also decreased by BG. Further study indicated that BG increased the antioxidant enzyme activities, activated Src, and promoted NF-κB activation, especially for the p65, p50, and RelB subunits. The activated NF-κB upregulated the expression of antioxidant protein MnSOD, DNA damage-response and repair-related proteins BRCA2 and Hsp90α, and antiapoptotic protein Bcl-2. Conclusion Our results demonstrated that BG protects EA.hy926 cells from high linear-energy-transfer carbon-ion irradiation damage through the upregulation of prosurvival signaling triggered by the interaction of BG with its receptor. This confirms that BG is a promising radioprotective agent for heavy-ion exposure.
Collapse
Affiliation(s)
- Fang LIU
- International Genome Center, Jiangsu University, Zhenjiang, Jiangsu, P.R.
China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Yanting WEI
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| | - Zhuanzi WANG
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu, P.R.
China
| |
Collapse
|
2
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Wang W, Xue C, Mao X. Radioprotective effects and mechanisms of animal, plant and microbial polysaccharides. Int J Biol Macromol 2020; 153:373-384. [PMID: 32087223 DOI: 10.1016/j.ijbiomac.2020.02.203] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Ionizing radiation is increasingly used to successfully diagnose many human health problems, but ionizing radiation may cause damage to organs/tissues in the living organisms such as the spleen, liver, skin, and brain. Many radiation protective agents have been discovered, with the deepening of radiation research. Unfortunately, these protective agents have many side effects, which cause drug resistance, nausea, vomiting, osteoporosis, etc. The polysaccharides extracted from natural sources are widely available and low in toxicity. In vivo and in vitro experiments have demonstrated that polysaccharides have anti-radiation activity through anti-oxidation, immune regulation, protection of hematopoietic system and protection against DNA damage. Recently, some studies have shown that polysaccharides were resistant to radiation. In the review, the anti-radiation activities of polysaccharides from different sources are summarized, and the anti-radiation mechanisms are discussed as well. It can be used to develop more effective anti-radiation management drugs.
Collapse
Affiliation(s)
- Wenjie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266200, China.
| |
Collapse
|
4
|
Nejadshafiee V, Naeimi H, Goliaei B, Bigdeli B, Sadighi A, Dehghani S, Lotfabadi A, Hosseini M, Nezamtaheri MS, Amanlou M, Sharifzadeh M, Khoobi M. Magnetic bio-metal-organic framework nanocomposites decorated with folic acid conjugated chitosan as a promising biocompatible targeted theranostic system for cancer treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:805-815. [PMID: 30889755 DOI: 10.1016/j.msec.2019.02.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/05/2019] [Accepted: 02/05/2019] [Indexed: 12/18/2022]
Abstract
In this work, a multifunctional magnetic Bio-Metal-Organic Framework (Fe3O4@Bio-MOF) coated with folic acid-chitosan conjugate (FC) was successfully prepared for tumor-targeted delivery of curcumin (CUR) and 5-fluorouracil (5-FU) simultaneously. Bio-MOF nanocomposite based on CUR as organic linker and zinc as metal ion was prepared by hydrothermal method in the presence of amine-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@NH2 MNPs). 5-FU was loaded in the magnetic Bio-MOF and the obtained nanocarrier was then coated with FC network. The prepared nanocomposite (NC) was fully characterized by high resolution-transmission electron microscope (HR-TEM), field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), nuclear magnetic resonance (NMR), and UV-vis analyses. In vitro release study showed controlled release of CUR and 5-FU in acidic pH confirming high selectivity and performance of the carrier in cancerous microenvironments. The selective uptake of 5-FU-loaded Fe3O4@Bio-MOF-FC by folate receptor-positive MDA-MB-231 cells was investigated and verified. The ultimate nanocarrier exhibited no significant toxicity, while drug loaded nanocarrier showed selective and higher toxicity against the cancerous cells than normal cells. SDS PAGE was also utilized to determine the protein pattern attached on the surface of the nanocarriers. In vitro and in vivo MRI studies showed negative signal enhancement in tumor confirming the ability of the nanocarrier to be applied as diagnostic agent. Owing to the selective anticancer release and cellular uptake, acceptable blood compatibility as well as suitable T2 MRI contrast performance, the target nanocarrier could be considered as favorable theranostic in breast cancer.
Collapse
Affiliation(s)
- Vajihe Nejadshafiee
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Hossein Naeimi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan 87317, Iran
| | - Bahram Goliaei
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Bahareh Bigdeli
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Armin Sadighi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Sadegh Dehghani
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Alireza Lotfabadi
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Hosseini
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Maryam Sadat Nezamtaheri
- Institute of Biochemistry and Biophysics, University of Tehran, Mailbox 13145-1384, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14176-53955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Biomaterials Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Gani A, Benjakul S. Effect of β-Glucan Stabilized Virgin Coconut Oil Nanoemulsion on Properties of Croaker Surimi Gel. JOURNAL OF AQUATIC FOOD PRODUCT TECHNOLOGY 2019. [DOI: 10.1080/10498850.2019.1571552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Asir Gani
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
6
|
Physical, rheological and antioxidant properties of gelatin gel as affected by the incorporation of β-glucan. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Exogenous Plant-Based Nutraceutical Supplementation and Peripheral Cell Mononuclear DNA Damage Following High Intensity Exercise. Antioxidants (Basel) 2018; 7:antiox7050070. [PMID: 29883433 PMCID: PMC5981256 DOI: 10.3390/antiox7050070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Plant-based nutraceuticals are categorised as nutritional supplements which contain a high concentration of antioxidants with the intention of minimising the deleterious effect of an oxidative insult. The primary aim of this novel study was to determine the effect of exogenous barley-wheat grass juice (BWJ) on indices of exercise-induced oxidative stress. Ten (n = 10) apparently healthy, recreationally trained (V̇O2max 55.9 ± 6 mL·kg−1·min−1), males (age 22 ± 2 years, height 181 ± 6 cm, weight 87 ± 8 kg, body mass index (BMI) 27 ± 1) volunteered to participant in the study. In a randomised, double-blinded, placebo-controlled crossover design, participants consumed either a placebo, a low dose (70 mL per day) of BWJ, or a high dose (140 mL per day) of BWJ for 7-days. Experimental exercise consisted of a standard maximal oxygen uptake test until volitional fatigue. DNA damage, as assessed by the single cell gel electrophoresis comet assay, increased following high intensity exercise across all groups (time × group; p < 0.05, Effect Size (ES) = 0.7), although there was no selective difference for intervention (p > 0.05). There was a main effect for time in lipid hydroperoxide concentration (pooled-group data, pre- vs. post-exercise, p < 0.05, ES = 0.2) demonstrating that exercise increased lipid peroxidation. Superoxide dismutase activity (SOD) increased by 44.7% following BWJ supplementation (pooled group data, pre- vs. post). The ascorbyl free radical (p < 0.05, ES = 0.26), α-tocopherol (p = 0.007, ES = 0.2), and xanthophyll (p = 0.000, ES = 0.5), increased between the pre- and post-exercise time points indicating a main effect of time. This study illustrates that a 7-day supplementation period of a novel plant-derived nutraceutical product is insufficient at attenuating exercise-induced oxidative damage. It is possible that with a larger sample size, and longer supplementation period, this novel plant-based nutraceutical could potentially offer effective prophylaxis against exercise-induced oxidative stress; as such, this justifies the need for further research.
Collapse
|
8
|
Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018. [DOI: 10.1080/01635581.2018.1446095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Behjat Javadi
- Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Woo SM, Kwon SC, Ko SG, Cho SG. Barley grass extract causes apoptosis of cancer cells by increasing intracellular reactive oxygen species production. Biomed Rep 2017; 6:681-685. [PMID: 28584641 DOI: 10.3892/br.2017.897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 01/10/2017] [Indexed: 02/06/2023] Open
Abstract
Cancer remains a leading cause of mortality worldwide, therefore food products are being investigated for potential prevention or treatment strategies. The ingredient, barley grass extract (Hordeum vulgare L.; Bex) is used to prevent or ameliorate various types of disease. In cancer, Bex has been revealed to inhibit tumor growth. However, its effect on cancer cells is yet to be clearly defined. In the present study, the effect of Bex on cancer cell growth was investigated. Bex inhibited the viabilities of breast and prostate cancer cells according to the results of MTT assays. Accordingly, Bex caused apoptosis, which was confirmed by Annexin V staining and western blot analysis for poly (ADP-ribose) polymerase and caspases. Furthermore, Bex increased the intracellular levels of reactive oxygen species (ROS), and N-acetyl-L-cystein blocked Bex-induced apoptosis. Therefore, the study demonstrated that Bex causes apoptosis of breast and prostate cancer cells by increasing intracellular ROS levels.
Collapse
Affiliation(s)
- Sang Mi Woo
- Department of Science in Korean Medicine, Graduate School of Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sang-Chul Kwon
- Department of Food Technology, Korea National University of Transportation, Jeungpyeong, Chungbuk 368-701, Republic of Korea
| | - Seong Gyu Ko
- Department of Science in Korean Medicine, Graduate School of Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Jeungpyeong, Chungbuk 368-701, Republic of Korea
| |
Collapse
|
10
|
Izquierdo-Vega JA, Morales-González JA, SánchezGutiérrez M, Betanzos-Cabrera G, Sosa-Delgado SM, Sumaya-Martínez MT, Morales-González Á, Paniagua-Pérez R, Madrigal-Bujaidar E, Madrigal-Santillán E. Evidence of Some Natural Products with Antigenotoxic Effects. Part 1: Fruits and Polysaccharides. Nutrients 2017; 9:nu9020102. [PMID: 28157162 PMCID: PMC5331533 DOI: 10.3390/nu9020102] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 01/19/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the leading causes of deaths worldwide. The agents capable of causing damage to genetic material are known as genotoxins and, according to their mode of action, are classified into mutagens, carcinogens or teratogens. Genotoxins are involved in the pathogenesis of several chronic degenerative diseases including hepatic, neurodegenerative and cardiovascular disorders, diabetes, arthritis, cancer, chronic inflammation and ageing. In recent decades, researchers have found novel bioactive phytocompounds able to counteract the effects of physical and chemical mutagens. Several studies have shown potential antigenotoxicity in a variety of fruits. In this review (Part 1), we present an overview of research conducted on some fruits (grapefruit, cranberries, pomegranate, guava, pineapple, and mango) which are frequentl consumed by humans, as well as the analysis of some phytochemicals extracted from fruits and yeasts which have demonstrated antigenotoxic capacity in various tests, including the Ames assay, sister chromatid exchange, chromosomal aberrations, micronucleus and comet assay.
Collapse
Affiliation(s)
- Jeannett Alejandra Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - José Antonio Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - Manuel SánchezGutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Gabriel Betanzos-Cabrera
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Hidalgo, México.
| | - Sara M Sosa-Delgado
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| | - María Teresa Sumaya-Martínez
- Secretaría de Investigación y Estudios de Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura Amado Nervo. Boulevard Tepic-Xalisco s/n, Tepic 28000, Nayarit, México.
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, Unidad A. López Mateos, Av. Juan de Dios Bátiz. Col., Lindavista, México D.F. 07738, Mexico.
| | - Rogelio Paniagua-Pérez
- Laboratorio de Bioquímica Muscular, Instituto Nacional de Rehabilitación, Av. México-Xochimilco. Col., Arenal de Guadalupe, México D.F. 14389, México.
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Unidad A. López-Mateos, Av. Wilfrido Massieu s/n, Lindavista, México D.F. 07738, México.
| | - Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Unidad Casco de Santo Tomas, Plan de San Luis y Díaz Mirón s/n, México D.F. 11340, México.
| |
Collapse
|
11
|
Bigdeli B, Goliaei B, Masoudi-Khoram N, Jooyan N, Nikoofar A, Rouhani M, Haghparast A, Mamashli F. Enterolactone: A novel radiosensitizer for human breast cancer cell lines through impaired DNA repair and increased apoptosis. Toxicol Appl Pharmacol 2016; 313:180-194. [DOI: 10.1016/j.taap.2016.10.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/09/2016] [Accepted: 10/24/2016] [Indexed: 01/17/2023]
|
12
|
Coevolution between Cancer Activities and Food Structure of Human Being from Southwest China. BIOMED RESEARCH INTERNATIONAL 2015; 2015:497934. [PMID: 26609527 PMCID: PMC4644535 DOI: 10.1155/2015/497934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/26/2015] [Indexed: 02/05/2023]
Abstract
Yunnan and Tibet are the lowest cancer mortality and the largest producer for anticancer crops (brown rice, barley, buckwheat, tea, walnut, mushrooms, and so forth). Shanghai and Jiangsu province in China have the highest mortality of cancers, which are associated with the sharp decline of barley.
Collapse
|