1
|
Ariyoshi K, Imaoka T, Ohmachi Y, Ishida Y, Uda M, Nishimura M, Shinagawa M, Yoshida M, Ogiu T, Kaminishi M, Morioka T, Kakinuma S, Shimada Y. Influence of Age on Leukemia Mortality Associated with Exposure to γ rays and 2-MeV Fast Neutrons in Male C3H Mice. Radiat Res 2024; 202:685-696. [PMID: 39187269 DOI: 10.1667/rade-23-00069.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/23/2024] [Indexed: 08/28/2024]
Abstract
The relative biological effectiveness (RBE) of densely ionizing radiation can depend on the biological context. From a radiological perspective, age is an important factor affecting health risks of radiation exposure, but little is known about the modifying impact of age on the effects of densely ionizing radiation. Herein, we addressed the influence of age on leukemogenesis induced by accelerator-generated fast neutrons (mean energy, ∼2 MeV). Male C3H/HeNrs mice were exposed to 137Cs γ rays (0.2-3.0 Gy) or neutrons (0.0485-0.97 Gy, γ ray contamination 0.0105-0.21 Gy) at 1, 3, 8, or 35 weeks of age and observed over their lifetimes under specific pathogen-free conditions. Leukemia and lymphoma were diagnosed pathologically. Hazard ratio (HR) and RBE for myeloid leukemia mortality as well as the age dependence of these two parameters were modeled and analyzed using Cox regression. Neutron exposure increased HR concordant with a linear dose response. The increase of HR per dose depended on age at exposure, with no significant dose dependence at age 1 or 3 weeks but a significant increase in HR of 5.5 per Gy (γ rays) and 16 per Gy (neutrons) at 8 weeks and 5.8 per Gy (γ rays) and 9 per Gy (neutrons) at 35 weeks. The RBE of neutrons was 2.1 (95% confidence interval, 1.1-3.7), with no dependence on age. The development of lymphoid neoplasms was not related to radiation exposure. The observed increasing trend of radiation-associated mortality of myeloid leukemia with age at exposure supports previous epidemiological and experimental findings. The results also suggest that exposure at the susceptible age of 8 or 35 weeks does not significantly influence the RBE value for neutrons for induction of leukemia, unlike what has been documented for breast and brain tumors.
Collapse
Affiliation(s)
- Kentaro Ariyoshi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Tatsuhiko Imaoka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yasushi Ohmachi
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Yuka Ishida
- Laboratory Animal and Genome Sciences Section, Department of Safety Administration, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Masahiro Uda
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Midori Yoshida
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Toshiaki Ogiu
- Research Center for Radiation Protection, National Institute of Radiological Sciences, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Environmental Sciences, Kamikita-gun, Aomori, Japan
| |
Collapse
|
2
|
Brown N, Finnon R, Finnon P, McCarron R, Cruz-Garcia L, O’Brien G, Herbert E, Scudamore CL, Morel E, Badie C. Spi1 R235C point mutation confers hypersensitivity to radiation-induced acute myeloid leukemia in mice. iScience 2023; 26:107530. [PMID: 37664628 PMCID: PMC10469541 DOI: 10.1016/j.isci.2023.107530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Ionizing radiation (IR) is a risk factor for acute myeloid leukemia (rAML). Murine rAMLs feature both hemizygous chromosome 2 deletions (Del2) and point mutations (R235) within the hematopoietic regulatory gene Spi1. We generated a heterozygous CBA Spi1 R235 mouse (CBASpm/+) which develops de novo AML with 100% incidence by ∼12 months old and shows a dose-dependent reduction in latency following X-irradiation. These effects are reduced on an AML-resistant C57Bl6 genetic background. CBASpm/Gfp reporter mice show increased Gfp expression, indicating compensation for Spm-induced Spi1 haploinsufficiency. Del2 is always detected in both de novo and rAMLs, indicating that biallelic Spi1 mutation is required for AML. CBASpm/+ mice show that a single Spm modification is sufficient for initiating AML development with complete penetrance, via the "two-hit" mechanism and this is accelerated by IR exposure. Similar SPI1/PU.1 polymorphisms in humans could potentially lead to enhanced susceptibility to IR following medical or environmental exposure.
Collapse
Affiliation(s)
- Natalie Brown
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Rosemary Finnon
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Paul Finnon
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Roisin McCarron
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Grainne O’Brien
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | | | | | - Edouard Morel
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group Radiation Effects Department, Radiation, Chemical and Environmental Hazards, UK Health Security Agency (UKHSA), Didcot OX11 ORQ, UK
| |
Collapse
|
3
|
Klokov D, Applegate K, Badie C, Brede DA, Dekkers F, Karabulutoglu M, Le Y, Rutten EA, Lumniczky K, Gomolka M. International expert group collaboration for developing an adverse outcome pathway for radiation induced leukaemia. Int J Radiat Biol 2022; 98:1802-1815. [PMID: 36040845 DOI: 10.1080/09553002.2022.2117873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE The concept of the adverse outcome pathway (AOP) has recently gained significant attention as to its potential for incorporation of mechanistic biological information into the assessment of adverse health outcomes following ionizing radiation (IR) exposure. This work is an account of the activities of an international expert group formed specifically to develop an AOP for IR-induced leukaemia. Group discussions were held during dedicated sessions at the international AOP workshop jointly organized by the MELODI (Multidisciplinary European Low Dose Initiative) and the ALLIANCE (European Radioecology Alliance) associations to consolidate knowledge into a number of biological key events causally linked by key event relationships and connecting a molecular initiating event with the adverse outcome. Further knowledge review to generate a weight of evidence support for the Key Event Relationships (KERs) was undertaken using a systematic review approach. CONCLUSIONS An AOP for IR-induced acute myeloid leukaemia was proposed and submitted for review to the OECD-curated AOP-wiki (aopwiki.org). The systematic review identified over 500 studies that link IR, as a stressor, to leukaemia, as an adverse outcome. Knowledge gap identification, although requiring a substantial effort via systematic review of literature, appears to be one of the major added values of the AOP concept. Further work, both within this leukaemia AOP working group and other similar working groups, is warranted and is anticipated to produce highly demanded products for the radiation protection research community.
Collapse
Affiliation(s)
- Dmitry Klokov
- Laboratory of Experimental Radiotoxicology and Radiobiology, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine (retired), Lexington, KY, USA
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Dag Anders Brede
- Centre for Environmental Radioactivity (CERAD), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norwegian University of Life Sciences (NMBU), Norway
| | - Fieke Dekkers
- Mathematical Institute, Utrecht University, Utrecht, The Netherlands.,Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Melis Karabulutoglu
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | | | - Eric Andreas Rutten
- Cancer Mechanisms and Biomarkers group, Department of Radiation Effects, Radiation, Chemical and Environmental, UK Health Security Agency, Oxfordshire, United Kingdom
| | - Katalin Lumniczky
- Radiation Biology, Federal Office for Radiation Protection BfS, Oberschleißheim, Germany
| | - Maria Gomolka
- Unit of Radiation Medicine, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| |
Collapse
|
4
|
O'Brien G, Cruz-Garcia L, Zyla J, Brown N, Finnon R, Polanska J, Badie C. Kras mutations and PU.1 promoter methylation are new pathways in murine radiation-induced AML. Carcinogenesis 2021; 41:1104-1112. [PMID: 31646336 PMCID: PMC7422620 DOI: 10.1093/carcin/bgz175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022] Open
Abstract
Therapy-related and more specifically radiotherapy-associated acute myeloid leukaemia (AML) is a well-recognized potential complication of cytotoxic therapy for the treatment of a primary cancer. The CBA mouse model is used to study radiation leukaemogenesis mechanisms with Sfpi1/PU.1 deletion and point mutation already identified as driving events during AML development. To identify new pathways, we analysed 123 mouse radiation-induced AML (rAML) samples for the presence of mutations identified previously in human AML and found three genes to be mutated; Sfpi1 R235 (68%), Flt3-ITD (4%) and Kras G12 (3%), of which G12R was previously unreported. Importantly, a significant decrease in Sfpi1 gene expression is found almost exclusively in rAML samples without an Sfpi1 R235 mutation and is specifically associated with up-regulation of mir-1983 and mir-582-5p. Moreover, this down-regulation of Sfpi1 mRNA is negatively correlated with DNA methylation levels at specific CpG sites upstream of the Sfpi1 transcriptional start site. The down regulation of Sfpi1/PU.1 has also been reported in human AML cases revealing one common pathway of myeloid disruption between mouse and human AML where dysregulation of Sfpi1/PU.1 is a necessary step in AML development.
Collapse
Affiliation(s)
- Gráinne O'Brien
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Lourdes Cruz-Garcia
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Zyla
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Natalie Brown
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Rosemary Finnon
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| | - Joanna Polanska
- Silesian University of Technology, Data Mining Division, Gliwice, Poland
| | - Christophe Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, UK
| |
Collapse
|
5
|
Tsuruoka C, Kaminishi M, Shinagawa M, Shang Y, Amasaki Y, Shimada Y, Kakinuma S. High Relative Biological Effectiveness of 2 MeV Fast Neutrons for Induction of Medulloblastoma in Ptch1+/- Mice with Radiation-specific Deletion on Chromosome 13. Radiat Res 2021; 196:225-234. [PMID: 34046685 DOI: 10.1667/rade-20-00025.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/06/2021] [Indexed: 11/03/2022]
Abstract
Neutron radiation, a high-linear energy transfer radiation, has a high relative biological effectiveness (RBE) for various end points. The age at exposure is an important modifier of the effects of radiation, including carcinogenesis, with infants being generally more radiosensitive. Ptch1+/- mice offer a unique experimental system for assessing radiation carcinogenesis. Spontaneous development of medulloblastoma tumors occurs in nonirradiated animals that lose their Ptch1+ allele, most frequently by a loss of heterozygosity (LOH) of chromosome 13 via recombination or non-disjunction (referred to as S-type tumors). In contrast, tumors occur in irradiated Ptch1+/- mice as a result of chromosome 13 LOH with an interstitial deletion (R-type), making spontaneous and radiation-induced tumors discernible. To elucidate the influence of age on the effect of fast neutrons, we irradiated Ptch1+/- mice with neutrons (mean energy, ∼2 MeV) or γ rays on embryonic day (E)14 and E17 and on postnatal day (P)1, 4 or 10 and classified the resulting medulloblastomas based on chromosome 13 aberrations. Instead of LOH, some tumors harbored mutations in their Ptch1+ gene via a nonirradiation-associated mechanism such as duplication, insertion, base substitution or deletion with microhomology-mediated end joining; thus, these tumors were classified as S-type. The RBE regarding the induction of R-type tumors was 12.9 (8.6, 17.2), 9.6 (6.9, 12.3), 21.5 (17.2, 25.8), and 7.1 (4.7, 9.5) (mean and 95% confidence interval) for mice irradiated on E14, E17, P1 and P4, respectively, with the highest value seen during the most active development of the tissue and P10 being completely resistant. These results indicate that the developmental stage at exposure of the tissue influences the RBE of neutrons.
Collapse
Affiliation(s)
- Chizuru Tsuruoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mutsumi Kaminishi
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Mayumi Shinagawa
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yi Shang
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiko Amasaki
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshiya Shimada
- Institute for Environmental Science, Kamikita-gun, Aomori, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| |
Collapse
|
6
|
Piao M, Zhang L. Knockdown of SNHG16 suppresses the proliferation and induces the apoptosis of leukemia cells via miR‑193a‑5p/CDK8. Int J Mol Med 2020; 46:1175-1185. [PMID: 32705162 PMCID: PMC7387099 DOI: 10.3892/ijmm.2020.4671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Although small nucleolar RNA host gene 16 (SNHG16) is known to exhibit auxo‑action in certain types of tumor, its role in leukemia remains unclear. The present study analyzed the role and mechanisms of action of SNHG16 in leukemia cells in order to identify therapeutic targets for this disease. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) was performed to determine SNHG16 expression in human leukemia cell lines. Using TargetScan 7.2 and dual‑luciferase reporter assay, the target genes of SNHG16 were verified. Following the downregulation of the expression of SNHG16 or its target genes, Cell Counting kit‑8 (CCK‑8) assay was performed to examine the viability of the leukemia cells. In addition, flow cytometry was performed to analyze the cell apoptotic rates, and colony formation assays were used to determine the cell proliferative ability. RT‑qPCR and western blot analysis were used to determine the association between SNHG16 and its target genes. SNHG16 was found to be abnormally highly expressed in acute myeloblastic leukemia cell lines, the knockdown of which weakened the viability of the leukemia cells, suppressed cell proliferation and promoted cell apoptosis. miR‑193a‑5p could bind to SNHG16, and its target gene was CDK8. Moreover, the expression of miR‑193a‑5p increased with the decrease in SNHG16 expression, while the inhibition of miR‑193a‑5p promoted the expression of CDK8. The downregulation of miR‑193a‑5p enhanced the viability of the leukemia cells, accelerated cell cloning and reduced cell apoptosis, which was completely opposite to the effects observed with the silencing of CDK8. The knockdown of SNHG16 suppressed the viability of the leukemia cells, suppressed cell proliferation, and induced cell apoptosis by regulating miR‑193a‑5p/CDK8. Thus, SNHG16 may prove to be a potential therapeutic target for the treatment of leukemia.
Collapse
Affiliation(s)
- Meihua Piao
- Clinical Laboratory, Yanbian University Hospital (Yanbian Hospital), Yanji, Jilin 133000
| | - Li Zhang
- Department of Neonatology, Weinan Maternal and Child Health Hospital, Weinan, Shaanxi 714000, P.R. China
| |
Collapse
|
7
|
Gault N, Verbiest T, Badie C, Romeo PH, Bouffler S. Hematopoietic stem and progenitor cell responses to low radiation doses - implications for leukemia risk. Int J Radiat Biol 2019; 95:892-899. [PMID: 30652952 DOI: 10.1080/09553002.2019.1569777] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies of the responses of hematopoietic stem and progenitor cells (HSPCs) to low doses of ionizing radiation formed an important aspect of the RISK-IR project ( www.risk-ir.eu ). A brief overview of these studies is presented here. The findings confirm the sensitivity of HSPCs to radiation even at low doses, and illustrate the substantial impact that differentiation state has upon cell sensitivity. The work provides mechanistic support for epidemiological findings of leukemia risk at dose levels used in diagnostic CT imaging, and further suggests that low-dose irradiation may facilitate bone marrow transplantation, a finding that could lead to refinements in clinical practice.
Collapse
Affiliation(s)
- Nathalie Gault
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Tom Verbiest
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Christophe Badie
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| | - Paul-Henri Romeo
- a CEA/DRF/IBFJ/iRCM/LRTS , Fontenay-aux-Roses Cedex , France.,b Inserm U967 , Fontenay-aux-Roses Cedex , France.,c CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Diderot , Paris , France.,d CEA/DRF/IBFJ/iRCM/LRTS-U1274 Inserm-Université Paris-Sud , Paris , France
| | - Simon Bouffler
- e Public Health England , Centre for Radiation, Chemical and Environmental Hazards , Oxfordshire , UK
| |
Collapse
|
8
|
Imaoka T, Nishimura M, Daino K, Takabatake M, Moriyama H, Nishimura Y, Morioka T, Shimada Y, Kakinuma S. Risk of second cancer after ion beam radiotherapy: insights from animal carcinogenesis studies. Int J Radiat Biol 2019; 95:1431-1440. [PMID: 30495977 DOI: 10.1080/09553002.2018.1547848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Purpose: To review recent studies to better understand the risk of second cancer after ion beam radiotherapy and to clarify the importance of animal radiobiology therein. Results: Risk of developing second cancer after radiotherapy is a concern, particularly for survivors of childhood tumors. Ion beam radiotherapy is expected to reduce the risk of second cancer by reducing exposure of normal tissues to radiation. Large uncertainty lies, however, in the choice of relative biological effectiveness (RBE) of high linear energy transfer (LET) radiation (e.g. carbon ions and neutrons) in cancer induction, especially for children. Studies have attempted to predict the risk of second cancer after ion beam radiotherapy based on an assessment of radiation dose, the risk of low LET radiation, and assumptions about RBE. Animal experiments have yielded RBE values for selected tissues, radiation types, and age at the time of irradiation; the results indicate potentially variable RBE which depends on tissues, ages, and dose levels. Animal studies have also attempted to identify genetic alterations in tumors induced by high LET radiation. Conclusions: Estimating the RBE value for cancer induction is important for understanding the risk of second cancer after ion beam radiotherapy. More comprehensive animal radiobiology studies are needed.
Collapse
Affiliation(s)
- Tatsuhiko Imaoka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan.,QST Advanced Study Laboratory, QST , Chiba , Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Kazuhiro Daino
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Masaru Takabatake
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Hitomi Moriyama
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Tokyo Metropolitan University , Tokyo , Japan
| | - Yukiko Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| | | | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan
| |
Collapse
|
9
|
Verbiest T, Bouffler S, Badie C. No equal opportunity for leukemia initiating cells. Oncotarget 2018; 9:37078-37079. [PMID: 30647845 PMCID: PMC6324679 DOI: 10.18632/oncotarget.26454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/04/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Tom Verbiest
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| | - Simon Bouffler
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Didcot, United Kingdom
| |
Collapse
|
10
|
Barnard SGR, Moquet J, Lloyd S, Ellender M, Ainsbury EA, Quinlan RA. Dotting the eyes: mouse strain dependency of the lens epithelium to low dose radiation-induced DNA damage. Int J Radiat Biol 2018; 94:1116-1124. [PMID: 30359158 DOI: 10.1080/09553002.2018.1532609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Epidemiological evidence regarding the radiosensitivity of the lens of the eye and radiation cataract development has led to changes in the EU Basic Safety Standards for protection of the lens against ionizing radiation. However, mechanistic details of lens radiation response pathways and their significance for cataractogenesis remain unclear. Radiation-induced DNA damage and the potential impairment of repair pathways within the lens epithelium, a cell monolayer that covers the anterior hemisphere of the lens, are likely to be involved. MATERIALS AND METHODS In this work, the lens epithelium has been analyzed for its DNA double-strand break (DSB) repair response to ionizing radiation. The responses of epithelial cells located at the anterior pole (central region) have been compared to at the very periphery of the monolayer (germinative and transitional zones). Described here are the different responses in the two regions and across four strains (C57BL/6, 129S2, BALB/c and CBA/Ca) over a low dose (0-25 mGy) in-vivo whole body X-irradiation range up to 24 hours post exposure. RESULTS DNA damage and repair as visualized through 53BP1 staining was present across the lens epithelium, although repair kinetics appeared non-uniform. Epithelial cells in the central region have significantly more 53BP1 foci. The sensitivities of different mouse strains have also been compared. CONCLUSIONS 129S2 and BALB/c showed higher levels of DNA damage, with BALB/c showing significantly less inter-individual variability and appearing to be a more robust model for future DNA damage and repair studies. As a result of this study, BALB/c was identified as a suitable radiosensitive lens strain to detect and quantify early low dose ionizing radiation DNA damage effects in the mouse eye lens specifically, as an indicator of cataract formation.
Collapse
Affiliation(s)
- S G R Barnard
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,b Department of Biosciences , Durham University , Durham , UK
| | - J Moquet
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - S Lloyd
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK.,c School of Biosciences , The University of Birmingham , Edgbaston , UK
| | - M Ellender
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - E A Ainsbury
- a Centre for Radiation, Chemical and Environmental Hazards , Public Health England , Chilton , Oxon, UK
| | - R A Quinlan
- b Department of Biosciences , Durham University , Durham , UK
| |
Collapse
|
11
|
Averbeck D, Salomaa S, Bouffler S, Ottolenghi A, Smyth V, Sabatier L. Progress in low dose health risk research. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:46-69. [DOI: 10.1016/j.mrrev.2018.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
|
12
|
Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis. Leukemia 2018; 32:1435-1444. [PMID: 29556020 PMCID: PMC5990525 DOI: 10.1038/s41375-018-0085-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution.
Collapse
|
13
|
Huang Y, Huang Y, Chang A, Wang J, Zeng X, Wu J. Is Toxoplasma Gondii Infection a Risk Factor for Leukemia? An Evidence-Based Meta-Analysis. Med Sci Monit 2016; 22:1547-52. [PMID: 27155015 PMCID: PMC4917333 DOI: 10.12659/msm.897155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Possible associations of parasite infection with cancer risk have recently attracted much attention. Published studies concerning the association between Toxoplasma gondii (T. gondii) infection and leukemia risk have generated inconsistent results. In the present study, we aimed to address this topic by conducting a quantitative meta-analysis. MATERIAL AND METHODS Relevant publications were searched in electronic databases and eligible studies were rigorously screened and selected. Essential information was extracted and the data were pooled. Subgroup analysis on source of controls and detection target was also performed. RESULTS A total of 6 studies that met the inclusion criteria were selected. The overall data show that T. gondii infection might have an association with increased leukemia risk (OR=3.05; 95%CI=1.83-5.08). Similar results were shown in the subgroups regarding source of controls and detection target. CONCLUSIONS Our results suggest that T. gondii infection might be a risk factor for leukemia, providing new insight into the etiology of leukemia. Future studies with large sample sizes in different geographic areas are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Yi Huang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Yu Huang
- Department of Invasive Technology, Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Aoshuang Chang
- Department of Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Xiaoqing Zeng
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, P.R. China
| | - Jiahong Wu
- Department of Parasitology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou, P.R. China
| |
Collapse
|