1
|
Iso T, Suzuki K, Murata Y, Hirose N, Umano T, Horibata K, Sugiyama KI, Hirose A, Masumura K, Matsumoto M. Lack of in vivo mutagenicity of carbendazim in the liver and glandular stomach of MutaMice. Genes Environ 2024; 46:7. [PMID: 38378650 PMCID: PMC10877847 DOI: 10.1186/s41021-024-00299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Carbendazim (methyl 2-benzimidazolecarbamate, CASRN: 10605-21-7) exhibits spindle poisoning effects and is widely used as a fungicide. With respect to genotoxicity, carbendazim is deemed to be non-mutagenic in vitro, but it causes indicative DNA damage in vivo and chromosome aberrations in vitro and in vivo. In this study, we examined the mutagenicity of carbendazim in vivo. RESULTS MutaMice were treated with carbendazim orally at doses of 0 (corn oil), 250, 500, and 1,000 mg/kg/day once a day for 28 days. A lacZ assay was used to determine the mutant frequency (MF) in the liver and glandular stomach of mice. MutaMice were administered up to the maximum dose recommended by the Organization for Economic Co-operation and Development Test Guidelines for Chemicals No. 488 (OECD TG488). The lacZ MFs in the liver and glandular stomach of carbendazim-treated animals were not significantly different from those in the negative control animals. In contrast, positive control animals exhibited a significant increase in MFs in both the liver and glandular stomach. CONCLUSIONS Carbendazim is non-mutagenic in the liver and glandular stomach of MutaMice following oral treatment.
Collapse
Affiliation(s)
- Takako Iso
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
| | - Kenichiro Suzuki
- Genotoxicology Laboratory, BioSafety Research Center Inc., Shizuoka, Japan
| | - Yasumasa Murata
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
| | - Nozomu Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
| | - Takaaki Umano
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
| | - Katsuyoshi Horibata
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Akihiko Hirose
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Kenichi Masumura
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan
| | - Mariko Matsumoto
- Division of Risk Assessment, National Institute of Health Sciences, Kanagawa, Japan.
| |
Collapse
|
2
|
Martus HJ, Zeller A, Kirkland D. International Workshops on Genotoxicity Testing (IWGT): Origins, achievements and ambitions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108469. [PMID: 37777464 DOI: 10.1016/j.mrrev.2023.108469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/02/2023]
Abstract
Over the past thirty years, the International Workshops on Genotoxicity Testing (IWGT) became one of the leading groups in the field of regulatory genotoxicology, not only due to the diversity of participants with respect to geography and professional affiliation, but also due to the unique setup of recurring IWGT meetings every four years. The hallmarks of the IWGT process have been diligent initial planning approaches of the working groups, collection of data so as to stimulate data-driven discussions and debate, and striving to reach consensus recommendations. The scientific quality of the Working Groups (WGs) has been exceptional due to the selection of highly regarded experts on each topic. As a result, the IWGT working group reports have become important documents. The deliberations and publications have provided guidance on test systems and testing protocols that have influenced the development or revision of test guidelines of the Organisation for Economic Co-operation and Development (OECD), guidance by the International Council for Harmonisation (ICH), and strategic testing or data analysis approaches in general. This article summarizes the history of the IWGT, identifies some of its major achievements, and provides an outlook for the future.
Collapse
Affiliation(s)
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - David Kirkland
- Kirkland Consulting, P O Box 79, Tadcaster LS24 0AS, United Kingdom
| |
Collapse
|
3
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
4
|
Kirsch-Volders M, Fenech M. Aneuploidy, inflammation and diseases. Mutat Res 2022; 824:111777. [PMID: 35358789 DOI: 10.1016/j.mrfmmm.2022.111777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 05/23/2023]
Abstract
This review discusses how numerical aneuploidy may trigger inflammation in somatic cells and its consequences. Therefore we: i) summarized current knowledge on the cellular and molecular pathological effects of aneuploidy; ii) considered which of these aspects are able to trigger inflammation; iii) determined the genetic and environmental factors which may modulate the link between aneuploidy and inflammation; iv) explored the rôle of diet in prevention of aneuploidy and inflammation; v) examined whether aneuploidy and inflammation are causes and/or consequences of diseases; vi) identified the knowledge gaps and research needed to translate these observations into improved health care and disease prevention. The relationships between aneuploidy, inflammation and diseases are complex, because they depend on which chromosomes are involved, the proportion of cells affected and which organs are aneuploid in the case of mosaic aneuploidy. Therefore, a systemic approach is recommended to understand the emergence of aneuploidy-driven diseases and to take preventive measures to protect individuals from exposure to aneugenic conditions.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Michael Fenech
- Genome Health Foundation, North Brighton, SA 5048, Australia; Clinical and Health Sciences, University of South Australia, SA 5000, Australia.
| |
Collapse
|
5
|
Comparison of the frequencies of ENU-induced point mutations in male germ cells and inherited germline mutations in their offspring. Genes Environ 2021; 43:43. [PMID: 34627396 PMCID: PMC8501628 DOI: 10.1186/s41021-021-00216-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background Gene mutations induced in germ cells may be transmitted to the next generation and cause adverse effects such as genetic diseases. Certain mutations may result in infertility or death in early development. Thus, the mutations may not be inheritable. However, the extent to which point mutations in male germ cells are transmitted to the next generation or eliminated during transmission is largely unknown. This study compared mutation frequencies (MFs) in sperm of N-ethyl-N-nitrosourea (ENU)-treated gpt delta mice and de novo MFs in the whole exome/genome of their offspring. Results Male gpt delta mice were treated with 10, 30, and 85 mg/kg of ENU (i.p., weekly × 2) and mated with untreated females to generate offspring. We previously reported a dose-dependent increase in de novo MFs in the offspring estimated by whole exome sequencing (WES) (Mutat. Res., 810, 30–39, 2016). In this study, gpt MFs in the sperm of ENU-treated mice were estimated, and the MFs per reporter gene were converted to MFs per base pair. The inherited de novo MFs in the offspring (9, 26 and 133 × 10− 8/bp for 10, 30, and 85 mg/kg ENU-treated groups, respectively) were comparable to those of the converted gpt MFs in the sperm of ENU-treated fathers (6, 16, and 69 × 10− 8/bp). It indicated that the gpt MFs in the ENU-treated father’s sperm were comparable to the inherited de novo MFs in the offspring as estimated by WES. In addition, de novo MFs in the offspring of 10 mg/kg ENU-treated and control fathers were estimated by whole genome sequencing (WGS), because WES was not sufficiently sensitive to detect low background MF. The de novo MF in the offspring of the ENU-treated fathers was 6 × 10− 8/bp and significantly higher than that of the control (2 × 10− 8/bp). There were no significant differences in de novo MFs between gene-coding and non-coding regions. WGS analysis was able to detect ENU-induced characteristic de novo base substitutions at a low dose group. Conclusions Despite a difference between exome/genome and exogenous reporter genes, the results indicated that ENU-induced point mutations in male germ cells could be transmitted to the next generation without severe selection. Supplementary Information The online version contains supplementary material available at 10.1186/s41021-021-00216-z.
Collapse
|
6
|
More SJ, Bampidis V, Bragard C, Halldorsson TI, Hernández‐Jerez AF, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen SS, Schlatter J, Schrenk D, Turck D, Younes M, Aquilina G, Bignami M, Bolognesi C, Crebelli R, Gürtler R, Marcon F, Nielsen E, Vleminckx C, Carfì M, Martino C, Maurici D, Parra Morte J, Rossi A, Benford D. Guidance on aneugenicity assessment. EFSA J 2021; 19:e06770. [PMID: 34386097 PMCID: PMC8340060 DOI: 10.2903/j.efsa.2021.6770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The EFSA Scientific Committee was asked to provide guidance on the most appropriate in vivo tests to follow up on positive in vitro results for aneugenicity, and on the approach to risk assessment for substances that are aneugenic but not clastogenic nor causing gene mutations. The Scientific Committee confirmed that the preferred approach is to perform an in vivo mammalian erythrocyte micronucleus test with a relevant route of administration. If this is positive, it demonstrates that the substance is aneugenic in vivo. A negative result with evidence that the bone marrow is exposed to the test substance supports a conclusion that aneugenic activity is not expressed in vivo. If there is no evidence of exposure to the bone marrow, a negative result is viewed as inconclusive and further studies are required. The liver micronucleus assay, even though not yet fully validated, can provide supporting information for substances that are aneugenic following metabolic activation. The gastrointestinal micronucleus test, conversely, to be further developed, may help to assess aneugenic potential at the initial site of contact for substances that are aneugenic in vitro without metabolic activation. Based on the evidence in relation to mechanisms of aneugenicity, the Scientific Committee concluded that, in principle, health-based guidance values can be established for substances that are aneugenic but not clastogenic nor causing gene mutations, provided that a comprehensive toxicological database is available. For situations in which the toxicological database is not sufficient to establish health-based guidance values, some approaches to risk assessment are proposed. The Scientific Committee recommends further development of the gastrointestinal micronucleus test, and research to improve the understanding of aneugenicity to support risk assessment.
Collapse
|
7
|
Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, Villeneuve D, Barton-Maclaren TS, Meek B, Anghel C, Heghes C, Barber C, Perkins E, Leblanc J, Burtt J, Laakso H, Laurier D, Lazo T, Whelan M, Thomas R, Cool D. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol 2021; 97:431-441. [PMID: 33539251 PMCID: PMC10711570 DOI: 10.1080/09553002.2021.1884314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.cd/aops). Currently, AOPs have been considered predominantly in chemical safety but are relevant to radiation. In this context, the Nuclear Energy Agency's (NEA's) High-Level Group on Low Dose Research (HLG-LDR) is working to improve research co-ordination, including radiological research with chemical research, identify synergies between the fields and to avoid duplication of efforts and resource investments. To this end, a virtual workshop was held on 7 and 8 October 2020 with experts from the OECD AOP Programme together with the radiation and chemical research/regulation communities. The workshop was a coordinated effort of Health Canada, the Electric Power Research Institute (EPRI), and the Nuclear Energy Agency (NEA). The AOP approach was discussed including key issues to fully embrace its value and catalyze implementation in areas of radiation risk assessment. CONCLUSIONS A joint chemical and radiological expert group was proposed as a means to encourage cooperation between risk assessors and an initial vision was discussed on a path forward. A global survey was suggested as a way to identify priority health outcomes of regulatory interest for AOP development. Multidisciplinary teams are needed to address the challenge of producing the appropriate data for risk assessments. Data management and machine learning tools were highlighted as a way to progress from weight of evidence to computational causal inference.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | | | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Nathalie Delrue
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Francesco Marchetti
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michael Boyd
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
| | - Daniel Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN, USA
| | | | - Bette Meek
- McLaughlin Centre, University of Ottawa, Ottawa, Canada
| | | | | | | | - Edward Perkins
- US Army Engineer Research and Development Center Jackson, Vicksburg, MS, USA
| | - Julie Leblanc
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Burtt
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Holly Laakso
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ted Lazo
- Radiological Protection and Human Aspects of Nuclear Safety Division, OECD Nuclear Energy Agency, Paris, France
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Russell Thomas
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donald Cool
- Electric Power Research Institute, Charlotte, NC, USA
| |
Collapse
|
8
|
Cuckle H, Benn P. Review of epidemiological factors (other than maternal age) that determine the prevalence of common autosomal trisomies. Prenat Diagn 2020; 41:536-544. [PMID: 32895968 DOI: 10.1002/pd.5822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
The birth prevalence of each common autosomal trisomy (21, 18 and 13) increases with advancing maternal age and this is the most important epidemiological risk factor. Prevalence during pregnancy is also dependent on gestational age. Other factors claimed to influence prevalence include paternal age, ethnicity, family history, premature reproductive aging, parity, twinning, smoking, environmental exposures, maternal medical conditions, and predispositions. We review the evidence for these associations since they may provide insights into causal mechanisms. When investigating potential co-factors it is important to adequately allow for maternal age and minimize its confounding contribution. This is well illustrated by reports of an inverse paternal age effect where there is strong correlation between parental ages. Gestational age at diagnosis, availability of prenatal screening, diagnostic testing, and elective termination of affected pregnancies and healthcare disparities also confound the studies on ethnicity, medical conditions, and predispositions or environmental factors. Data from twin zygosity studies demonstrate the importance of differences in fetal viability for affected pregnancies. We conclude that existing epidemiological evidence for most of the co-factors discussed should currently be considered tenuous; history of Down syndrome, albeit biased, may be an exception. The co-factors may yet provide clues to hitherto poorly understood causal pathways.
Collapse
Affiliation(s)
- Howard Cuckle
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Peter Benn
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
9
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Tweats D, Eastmond DA, Lynch AM, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M. Role of aneuploidy in the carcinogenic process: Part 3 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403032. [PMID: 31699349 DOI: 10.1016/j.mrgentox.2019.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | |
Collapse
|
11
|
Lynch AM, Eastmond D, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M, Tweats D. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403025. [PMID: 31699346 DOI: 10.1016/j.mrgentox.2019.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.
Collapse
Affiliation(s)
| | | | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | | | |
Collapse
|