1
|
Xie ZF, Liu HM, Zhao JF, Gao Y, Zhao YL, Zheng JY, Pei XW, Zhang N, Tian G. AMD1, a cardiotoxicity target for Maduramicin. BMC Pharmacol Toxicol 2025; 26:55. [PMID: 40069794 PMCID: PMC11895246 DOI: 10.1186/s40360-025-00897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The aim of this study was to investigate AMD1 cardiotoxicity function for Maduramicin (Mad). METHODS SD rats were divided into control (Control) group and Mad treatment (3.5 mg/kg) group (Mad). After treatment with Mad for seven days, the levels of LDH and CK-MB in serum were detected, H&E staining and TUNEL staining were performed. In vitro, 1.0 μm Mad was used for the subsequently experiment, observing cell apoptosis from Flow cytometry. Caspase-3 and AMD1 were detected in Western blotting. Flow cytometry and Western blotting were also performed after use of siRNA-AMD1-1. Then, analysis AMD1 potential function in cardiotoxicity from bioinformatics techniques including GO, KEGG, PPI, immune infiltration and molecular docking. RESULT Maduramicin has myocardial toxic effects in vivo and vitro, which with AMD1 raised. When AMD1 was knocked down, toxic effects of Mad were alleviated. Apoptosis, proliferation and inflammation were the major pathophysiological changes in myocardial apoptosis process with AMD1-knockdown. This process involved in IL1A, IL1B, PTGS2, VEGFA, VEGFC and HBEFG, as hub genes related AMD1 cardiotoxicity function for Maduramicin. AMD1 was knocked down, their microenvironment changes: Effector memory CD4 T cell and Natural killer cell were more infiltrated, and Mast cell were less infiltrated. CONCLUSION Mad exerted cardiotoxic effects by upregulating the AMD1 gene, which may be associated with cell apoptosis, proliferation and inflammatory response. AMD1 also had cardiotoxicity function, by the impact of both myocardial cells and the microenvironment they live.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Han-Meng Liu
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Fan Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan-Long Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Yue Zheng
- Stomatology Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiao-Wei Pei
- Department of Physical Medicine and Rehabilitation, Linghai Daling River Hospital, Linghai, Liaoning, 121200, China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
2
|
Clement K, Nemec-Bakk AS, Jun SR, Sridharan V, Patel CM, Williams DK, Newhauser WD, Willey JS, Williams J, Boerma M, Chancellor JC, Koturbash I. Long-term effects of combined exposures to simulated microgravity and galactic cosmic radiation on the mouse lung: sex-specific epigenetic reprogramming. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2025; 64:17-27. [PMID: 39841235 DOI: 10.1007/s00411-025-01108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/14/2025] [Indexed: 01/23/2025]
Abstract
Most studies on the effects of galactic cosmic rays (GCR) have relied on terrestrial irradiation using spatially homogeneous dose distributions of mono-energetic beams comprised of one ion species. Here, we exposed mice to novel beams that more closely mimic GCR, namely, comprising poly-energetic ions of multiple species. Six-month-old male and female C57BL/6J mice were exposed to 0 Gy, 0.5 Gy, or 1.5 Gy simplified simulated 5 ion GCR (GCRsim). Exposure to microgravity was simulated using hindlimb unloading (HLU). At nine months post exposure, the mice were terminated to assess for the presence of exposure-induced epigenetic alterations. DNA hypermethylation in the 5'-untranslated regions of Lx_III, MdFanc_I, and MdMus_II families of the Long Interspersed Nucleotide Element 1 (LINE-1) was observed in the lungs of male mice. These effects were accompanied by increases in the expression of DNA methyltransferases Dnmt1 and Dnmt3a, and methyl-binding protein, MecP2. Trends towards DNA hypomethylation, although insignificant, were observed in the lungs of female mice in the HLU + 1.5 Gy GCRsim group. Altogether, our findings suggest persistent and sex-specific epigenetic reprogramming in the mouse lung and suggests that the DNA methylation status of LINE-1 can serve as a robust and reliable biomarker of previous radiation exposure.
Collapse
Affiliation(s)
- Kirsten Clement
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Ashley S Nemec-Bakk
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Se-Ran Jun
- Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Vijayalakshmi Sridharan
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Chirayu M Patel
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - D Keith Williams
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Wayne D Newhauser
- Department of Physics and Astronomy, Mary Bird Perkins Cancer Center, Louisiana State University, 439-B Nicholson Hall, Tower Dr, Baton Rouge, LA, 70803-4001, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Section on Radiation Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 21757, USA
| | - Jacqueline Williams
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA
| | - Jeffrey C Chancellor
- Department of Medical Physiology, College of Medicine, Medical Research and Education Building II, Texas A&M University, 8447 Riverside Pkwy, Office, 341, Bryan, TX, 77807, USA
| | - Igor Koturbash
- Department of Environmental Health Sciences, #820-11, Slot, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, 4301 W. Markham Str, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Autsavapromporn N, Duangya A, Klunklin P, Chitapanarux I, Kranrod C, Jaikang C, Monum T, Paemanee A, Tokonami S. Serum biomarkers associated with health impacts of high residential radon exposure: a metabolomic pilot study. Sci Rep 2025; 15:5099. [PMID: 39934345 DOI: 10.1038/s41598-025-89753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/13/2025] Open
Abstract
Long-term epidemiological evidence suggests that populations exposed to high natural radiation levels for extended periods may have an increased risk of cancer and other diseases. However, research on health effects in high-radon areas, particularly regarding disease-related biomarkers, remains limited. This study aimed to investigate serum metabolic biomarkers associated with diseases in individuals from areas with high radon exposure. Metabolic profiling was performed using ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry on 30 healthy participants comprising 15 individuals from a low-residential radon exposure group and 15 from a high-residential radon exposure group. Multivariate analysis, receiver operating characteristic (ROC) curve analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were applied. Partial least-squares discriminant analysis revealed significant differences (P < 0.05) between the two groups, identifying 92 metabolites. ROC analysis (AUC ≥ 0.85) highlighted 12 key candidates associated with high radon exposure. KEGG pathway analysis linked D-sphingosine to lung cancer development and 3-methylhistidine to kidney disease, early preeclampsia, and Alzheimer's disease. These findings suggest that D-sphingosine and 3-methylhistidine are promising serum biomarkers for identifying high-risk individuals with prolonged radon exposure and contribute to the identification of novel biomarkers in future studies on high-radon exposure areas.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Aphidet Duangya
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pitchayaponne Klunklin
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Chutima Kranrod
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Tawachai Monum
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Atchara Paemanee
- National Omics Center, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
- Food Biotechnology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, 12120, Thailand
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Aomori, Japan
| |
Collapse
|
4
|
Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: an update. Arch Toxicol 2024; 98:3619-3639. [PMID: 39317800 DOI: 10.1007/s00204-024-03871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
Heavy metals like cadmium (Cd) are one of the main environmental pollutants, with no biological role in the human body. Cd has been well-documented to have disastrous effects on both plants and animals. It is known to accumulate in kidneys, lungs, liver, and testes and is thought to affect these organs' function over time, which is linked to a very long biological half-life and a very poor rate of elimination. According to recent researches, the testes are extremely vulnerable to cadmium. The disruption of the blood-testis barrier, seminiferous tubules, Sertoli cells, and Leydig cells caused by cadmium leads to the loss of sperm through various mechanisms, such as oxidative stress, spermatogenic cell death, testicular swelling, dysfunction in androgen-producing cells, interference with gene regulation, disruption of ionic homeostasis, and damage to the vascular endothelium. Additionally, through epigenetic control, cadmium disrupts the function of germ cells and somatic cells, resulting in infertile or subfertile males. A full grasp of the mechanisms underlying testicular toxicity caused by Cd is very important to develop suitable strategies to ameliorate male fertility. Therefore, this review article outlines cadmium's impact on growth and functions of the testicles, reviews therapeutic approaches and protective mechanisms, considers recent research findings, and identifies future research directions.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
| | - Anshu Siwach
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Drishty Sachdeva
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology, Kurukshetra and Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
5
|
Wang J, Wang J, Zhang J, Gong H, Li J, Song Y, Huang Y, Ma B, Gu W, Yang R. Association between the methylations of RUNX3 in peripheral blood and lung cancer: a case-control study. Biomarkers 2024; 29:343-351. [PMID: 38923933 DOI: 10.1080/1354750x.2024.2373714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND RUNX3 is hypermethylated in multiple cancers. TIMP2 also functions as a regulator of tumors. However, there are only very few reports on the association of methylation of RUNX3 and TIMP2 with lung cancer (LC) in peripheral blood. METHODS 426 LC patients and 428 age- and sex-matched healthy controls were recruited. DNA methylation in blood was semi-quantitively assessed by mass spectrometry. For the association analysis, binary logistic regression analysis adjusted covariant was applied, and ORs were presented as per +10% methylation. RESULTS Hypermethylation of CpG_1, CpG_5 and CpG_8 in RUNX3 was significantly associated with LC (ORs = 1.45, 1.35 and 1.35, respectively, adjusted p < 0.05), and even stage I LC. The association between the three RUNX3 CpG sites and LC was enhanced by increased age (> 55 years, ORs ranged from 1.43 to 1.75, adjusted p < 0.05), male gender (ORs ranged from 1.47 to 1.59, adjusted p < 0.05) and tumor stage (stage II&III&IV, ORs ranged from 1.86 to 3.03, adjusted p < 0.05). CONCLUSIONS This study suggests a significant association between blood-based RUNX3 hypermethylation and LC, especially in elder people, in males and in LC patients with advanced stage.
Collapse
Affiliation(s)
- Jun Wang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Jue Wang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Jie Zhang
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Haixia Gong
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinchang Li
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Yakang Song
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| | - Yuyang Huang
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Boyue Ma
- Department of Respiratory and Sleep Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wanjian Gu
- Department of Clinical Laboratory, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Rongxi Yang
- Research and Development Department, TANTICA Biotechnology (Shanghai) Co., Ltd, Shanghai, China
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Zhang Z, Wang Q, Gao X, Tang X, Xu H, Wang W, Lei X. Reproductive toxicity of cadmium stress in male animals. Toxicology 2024; 504:153787. [PMID: 38522818 DOI: 10.1016/j.tox.2024.153787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/26/2024]
Abstract
Cadmium (Cd) is a common heavy metal pollutant in the environment, and the widespread use of products containing Cd compounds in industry has led to excessive levels in the environment, which enter the animal body through the food chain, thus seriously affecting the reproductive development of animals. Related studies have reported that Cd severely affects spermatogonia development and spermatogenesis in animals. In contrast, the reproductive toxicity of Cd in males and its mechanism of action have not been clarified. Therefore, this paper reviewed the toxic effects of Cd on germ cells, spermatogonia somatic cells and hypothalamic-pituitary-gonadal axis (HPG axis) of male animals and its toxic action mechanisms of oxidative stress, apoptosis and autophagy from the perspectives of cytology, genetics and neuroendocrinology. The effects of Cd stress on epigenetic modification of reproductive development in male animals were also analyzed. We hope to provide a reference for the in-depth study of the toxicity of Cd on male animal reproduction.
Collapse
Affiliation(s)
- Zikun Zhang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China
| | - Qi Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China
| | - Xiaoge Gao
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China
| | - Xu Tang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China
| | - Huan Xu
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China
| | - Wenqiang Wang
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China.
| | - Xin Lei
- College of Life Sciences, Yan'an University, Yan'an, Shaanxi 716000, China; Yan'an Key Laboratory of Ecological Restoration, Yan'an, China.
| |
Collapse
|