1
|
Juchem C, Cudalbu C, de Graaf RA, Gruetter R, Henning A, Hetherington HP, Boer VO. B 0 shimming for in vivo magnetic resonance spectroscopy: Experts' consensus recommendations. NMR IN BIOMEDICINE 2021; 34:e4350. [PMID: 32596978 DOI: 10.1002/nbm.4350] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 05/07/2023]
Abstract
Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) allow the chemical analysis of physiological processes in vivo and provide powerful tools in the life sciences and for clinical diagnostics. Excellent homogeneity of the static B0 magnetic field over the object of interest is essential for achieving high-quality spectral results and quantitative metabolic measurements. The experimental minimization of B0 variation is performed in a process called B0 shimming. In this article, we summarize the concepts of B0 field shimming using spherical harmonic shimming techniques, specific strategies for B0 homogenization and crucial factors to consider for implementation and use in both brain and body. In addition, experts' recommendations are provided for minimum requirements for B0 shim hardware and evaluation criteria for the primary outcome of adequate B0 shimming for MRS and MRSI, such as the water spectroscopic linewidth.
Collapse
Affiliation(s)
- Christoph Juchem
- Departments of Biomedical Engineering and Radiology, Columbia University, New York, New York
| | - Cristina Cudalbu
- Centre d'Imagerie Biomedicale (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Robin A de Graaf
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Center for Biomedical Imaging, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | | | - Vincent O Boer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| |
Collapse
|
2
|
1H Spectroscopic Imaging of the Rodent Brain. Methods Mol Biol 2018. [PMID: 29341010 DOI: 10.1007/978-1-4939-7531-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Proton MR spectroscopic imaging (MRSI) can provide a variety of "molecular images" from animal models of human disease, which are useful for different research purposes. This chapter describes a protocol for in vivo acquisition and analysis of MRSI data from the rodent brain.
Collapse
|
3
|
Logothetis NK. Intracortical recordings and fMRI: an attempt to study operational modules and networks simultaneously. Neuroimage 2012; 62:962-9. [PMID: 22248575 DOI: 10.1016/j.neuroimage.2012.01.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/22/2011] [Accepted: 01/01/2012] [Indexed: 11/26/2022] Open
Abstract
The brain can be envisaged as a complex adaptive system. It is characterized by a very high structural complexity and by massive connectivity, both of which change and evolve in response to experience. Information related to sensors and effectors is processed in both a parallel and a hierarchical fashion; the connectivity between different hierarchical levels is bidirectional, and its effectiveness is continuously controlled by specific associational and neuromodulatory centers. When questions are addressed at the level of a distributed, large-scale whole system such as that underlying perception and cognition, it is not clear what should be considered as an elementary operational unit because the behavior of integral, aggregate systems is always emergent and most often remains unpredicted by the behaviors of single cells. To localize and comprehend the neural mechanisms underlying our perceptual or cognitive capacities, concurrent studies of microcircuits, of local and long-range interconnectivity between small assemblies, and of the synergistic activity of larger neuronal populations are called for. In other words, multimodal methodologies that include invasive neuroscientific methods as well as global neuroimaging techniques are required, such as the various functional aspects of magnetic resonance imaging. These facts were the driving force behind the decision to begin animal-MRI in my lab. The wonderful idea of the editors of NeuroImage to publish a Special Issue commemorating 20years of functional fMRI provides me with the opportunity of sharing not only our first moments of frustration with the readers, but also our successful results.
Collapse
|
4
|
Wu WE, Kirov II, Zhang K, Babb JS, Joo CG, Ratai EM, González RG, Gonen O. Cross-sectional and longitudinal reproducibility of rhesus macaque brain metabolites: a proton MR spectroscopy study at 3 T. Magn Reson Med 2011; 65:1522-31. [PMID: 21337426 DOI: 10.1002/mrm.22867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 11/09/2022]
Abstract
Non-human primates are often used as preclinical model systems for (mostly diffuse or multi-focal) neurological disorders and their experimental treatment. Due to cost considerations, such studies frequently utilize non-destructive imaging modalities, MRI and proton MR spectroscopy ((1) H MRS). Cost may explain why the inter- and intra-animal reproducibility of the (1) H MRS observed brain metabolites, are not reported. To this end, we performed test-retest three-dimensional brain (1) H MRS in five healthy rhesus macaques at 3 T. Spectra were acquired from 224 isotropic (0.5 cm)(3) = 125 μL voxels, over 28 cm(3) (∼ 35%) of the brain, then individually phased, frequency aligned and summed into a spectrum representative of the entire volume of interest. This dramatically increases the metabolites' signal-to-noise ratios, while maintaining the (narrow) voxel linewidth. The results show that the average N-acetylaspartate, creatine, choline, and myo-inositol concentrations in the macaque brain are: 7.7 ± 0.5, 7.0 ± 0.5, 1.2 ± 0.1 and 4.0 ± 0.6 mM/g wet weight (mean ± standard deviation). Their inter-animal coefficients of variation (CV) are 4%, 4%, 6%, and 15%; and the longitudinal (intra-animal) CVs are lower still: 4%, 5%, 5%, and 4%, much better than the 22%, 33%, 36%, and 45% intra-voxel CVs, demonstrating the advantage of the approach and its utility for preclinical studies of diffuse neurological diseases in rhesus macaques.
Collapse
Affiliation(s)
- William E Wu
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Liu S, Fleysher R, Fleysher L, Joo CG, Ratai EM, González RG, Gonen O. Brain metabolites B1-corrected proton T1 mapping in the rhesus macaque at 3 T. Magn Reson Med 2010; 63:865-71. [PMID: 20373387 DOI: 10.1002/mrm.22270] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The accuracy of metabolic quantification in MR spectroscopy is limited by the unknown radiofrequency field and T(1). To address both issues in proton ((1)H) MR spectroscopy, we obtained radiofrequency field-corrected T(1) maps of N-acetylaspartate, choline, and creatine in five healthy rhesus macaques at 3 T. For efficient use of the 4 hour experiment, we used a new three-point protocol that optimizes the precision of T(1) in three-dimensional (1)H-MR spectroscopy localization for extensive, approximately 30%, brain coverage at 0.6 x 0.6 x 0.5 cm(3) = 180-microL spatial resolution. The resulting mean T(1)s in 700 voxels were N-acetylaspartate = 1232 +/- 44, creatine = 1238 +/- 23 and choline = 1107 +/- 56 ms (mean +/- standard error of the mean). Their histograms from all 140 voxels in each animal were similar in position and shape, characterized by standard errors of the mean of the full width at half maximum divided by their means of better than 8%. Regional gray matter N-acetylaspartate, choline, and creatine T(1)s (1333 +/- 43, 1265 +/- 52, and 1131 +/- 28 ms) were 5-10% longer than white matter: 1188 +/- 34, 1201 +/- 24, and 1082 +/- 50 ms (statistically significant for the N-acetylaspartate only), all within 10% of the corresponding published values in the human brain.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu S, Gonen O, Fleysher R, Fleysher L, Babb JS, Soher BJ, Joo CG, Ratai EM, González RG. Metabolite proton T(2) mapping in the healthy rhesus macaque brain at 3 T. Magn Reson Med 2010; 62:1292-9. [PMID: 19780178 DOI: 10.1002/mrm.22117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The structure and metabolism of the rhesus macaque brain, an advanced model for neurologic diseases and their treatment response, is often studied noninvasively with MRI and (1)H-MR spectroscopy. Due to the shorter transverse relaxation time (T(2)) at the higher magnetic fields these studies favor, the echo times used in (1)H-MR spectroscopy subject the metabolites to unknown T(2) weighting, decreasing the accuracy of quantification which is key for inter- and intra-animal comparisons. To establish the "baseline" (healthy animal) T(2) values, we mapped them for the three main metabolites' T(2)s at 3 T in four healthy rhesus macaques and tested the hypotheses that their mean values are similar (i) among animals; and (ii) to analogs regions in the human brain. This was done with three-dimensional multivoxel (1)H-MR spectroscopy at (0.6 x 0.6 x 0.5 cm)(3) = 180 microL spatial resolution over a 4.2 x 3.0 x 2.0 = 25 cm(3) ( approximately 30%) of the macaque brain in a two-point protocol that optimizes T(2) precision per unit time. The estimated T(2)s in several gray and white matter regions are all within 10% of those reported in the human brain (mean +/- standard error of the mean): N-acetylaspartate = 316 +/- 7, creatine = 177 +/- 3, and choline = 264 +/- 9 ms, with no statistically significant gray versus white matter differences.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Michaelis T, Abaei A, Boretius S, Tammer R, Frahm J, Schlumbohm C, Fuchs E. Intrauterine hyperexposure to dexamethasone of the common marmoset monkey revealed normal cerebral metabolite concentrations in adulthood as assessed by quantitative proton magnetic resonance spectroscopy in vivo. J Med Primatol 2009; 38:213-8. [PMID: 19374665 DOI: 10.1111/j.1600-0684.2009.00342.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Animal models of human brain disorders often have to rely on non-human primates because of their immunological, physiological, and cognitive similarities to humans. METHODS Localized proton magnetic resonance spectroscopy was performed to assess cerebral metabolite profiles of male common marmoset monkeys in vivo and to determine putative alterations of adult brain metabolism in response to intrauterine hyperexposure to the synthetic glucocorticoid hormone dexamethasone. RESULTS Excellent spectral quality allowed for absolute quantification of the concentrations of major metabolites in predominantly white matter, gray matter, and thalamus. Marmoset monkeys intrauterinely hyperexposed to dexamethasone revealed normal neurochemical profiles at adulthood. CONCLUSIONS Prenatally applied dexamethasone does not lead to persistent metabolic alterations affecting adult brain integrity.
Collapse
Affiliation(s)
- T Michaelis
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
8
|
Fleysher R, Fleysher L, Liu S, Gonen O. On the voxel size and magnetic field strength dependence of spectral resolution in magnetic resonance spectroscopy. Magn Reson Imaging 2008; 27:222-32. [PMID: 18687553 DOI: 10.1016/j.mri.2008.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 06/12/2008] [Accepted: 06/17/2008] [Indexed: 11/18/2022]
Abstract
While the inherent low sensitivity of in vivo MR spectroscopy motivated a trend towards higher magnetic fields, B(0), it has since become apparent that this increase does not seem to translate into the anticipated improvement in spectral resolution. This is attributed to the decrease of the transverse relaxation time, T(2)*, in vivo due to macro- and mesoscopic tissue susceptibility. Using spectral contrast-to-noise ratio (SCNR) arguments, we show that if in biological systems the linewidth (on the frequency scale) increases linearly with the field, the spectral resolution (in parts per million) improves approximately as the fifth-root of B(0) for chemically shifted lines and decreases as about B(0)(4/5) (in hertz) for a structure of J-coupled multiplets. It is also shown that for any given B(0) there is a unique voxel size that is optimal in spectral resolution, linking the spectral and spatial resolutions. Since in practical applications the spatial resolution may be dictated by the target anatomy, nomograms to determine the B(0) required to achieve the desired spectral resolution at that voxel size are presented. More generally, the scaling of the nomograms to determine the achievable spectral and spatial resolutions at any given field is described.
Collapse
Affiliation(s)
- Roman Fleysher
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | |
Collapse
|
9
|
Liu S, Gonen O, Fleysher L, Fleysher R, Soher BJ, Pilkenton S, Lentz MR, Ratai EM, González RG. Regional metabolite T2 in the healthy rhesus macaque brain at 7T. Magn Reson Med 2008; 59:1165-9. [PMID: 18429024 DOI: 10.1002/mrm.21574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the rhesus macaque brain is an excellent model system for the study of neurological diseases and their responses to treatment, its small size requires much higher spatial resolution, motivating use of ultra-high-field (B(0)) imagers. Their weaker radio-frequency fields, however, dictate longer pulses; hence longer TE localization sequences. Due to the shorter transverse relaxation time (T(2)) at higher B(0)s, these longer TEs subject metabolites to T(2)-weighting, that decrease their quantification accuracy. To address this we measured the T(2)s of N-acetylaspartate (NAA), choline (Cho), and creatine (Cr) in several gray matter (GM) and white matter (WM) regions of four healthy rhesus macaques at 7T using three-dimensional (3D) proton MR spectroscopic imaging at (0.4 cm)(3) = 64 mul spatial resolution. The results show that macaque T(2)s are in good agreement with those reported in humans at 7T: 169 +/- 2.3 ms for NAA (mean +/- SEM), 114 +/- 1.9 ms for Cr, and 128 +/- 2.4 ms for Cho, with no significant differences between GM and WM. The T(2) histograms from 320 voxels in each animal for NAA, Cr, and Cho were similar in position and shape, indicating that they are potentially characteristic of "healthy" in this species.
Collapse
Affiliation(s)
- Songtao Liu
- Department of Radiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Gonen O, Liu S, Goelman G, Ratai EM, Pilkenton S, Lentz MR, González RG. Proton MR spectroscopic imaging of rhesus macaque brain in vivo at 7T. Magn Reson Med 2008; 59:692-9. [PMID: 18302225 DOI: 10.1002/mrm.21554] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Due to the overall similarity of their brains' structure and physiology to its human counterpart, nonhuman primates provide excellent model systems for the pathogenesis of neurological diseases and their response to treatments. Its much smaller size, 80 versus 1250 cm(3), however, requires proportionally higher spatial resolution to study, nondestructively, as many analogous regions as efficiently as possible in anesthetized animals. The confluence of these requirements underscores the need for the highest sensitivity, spatial coverage, resolution, and exam speed. Accordingly, we demonstrate the feasibility of 3D multi-voxel, proton ((1)H) MRSI at (0.375 cm)(3)=0.05 cm(3) isotropic spatial resolution over 21 cm(3) (approximately 25%) of the anesthetized rhesus macaques brain at 7T in 25 min. These voxels are x10(2)-10(1) times smaller than the 8-1 cm(3) common to (1)H-MRS in humans, retaining similar proportions between the macaque and human brain. The spectra showed a signal-to-noise-ratio (SNR) approximately 9-10 for the major metabolites and the interanimal SNR spatial distribution reproducibility was in the +/-10% range for the standard error of their means (SEMs). Their metabolites' linewidths, 9+/-2 Hz, yield excellent spectral resolution as well. These results indicate that 3D (1)H-MRSI can be integrated into comprehensive MR studies in primates at such high fields.
Collapse
Affiliation(s)
- Oded Gonen
- Department of Radiology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Yang S, Hu J, Kou Z, Yang Y. Spectral simplification for resolved glutamate and glutamine measurement using a standard STEAM sequence with optimized timing parameters at 3, 4, 4.7, 7, and 9.4T. Magn Reson Med 2008; 59:236-44. [PMID: 18228589 DOI: 10.1002/mrm.21463] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The C4 multiplet proton resonances of glutamate (Glu) around 2.35 ppm and glutamine (Gln) around 2.45 ppm usually overlap in MR spectra, particularly at low- and mid-field strengths (1.5-4.7T). A spectral simplification approach is introduced that provides unobstructed Glu and Gln measurement using a standard STEAM localization sequence with optimized interpulse timings. The underlying idea is to exploit the dependence of response of a coupled spin system on the echo time (TE) and mixing time (TM) to find an optimum timing set (TE, TM), at which the outer-wings of C4 "pseudo-triplet" proton resonances of Glu and Gln are significantly suppressed while the central peaks are maintained. The spectral overlap is thus resolved as the overlap exists exclusively at the outer-wings and the central peaks are readily separated due to the approximate 0.1-ppm difference in chemical shift. Density matrix simulation for Glu, Gln, and other overlapping metabolites at 2.3-2.5 ppm was conducted to predict the optimum timing sets. The simulated, phantom, and in vivo results demonstrated that the C4 multiplet proton resonances of Glu and Gln can be resolved for unobstructed detection at 3T, 4T, and 4.7T. For simplicity, only simulated data are illustrated at 7T and 9.4T.
Collapse
Affiliation(s)
- Shaolin Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, 5500 Nathan Shock Boulevard, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
12
|
Juchem C, Muller-Bierl B, Schick F, Logothetis NK, Pfeuffer J. Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2006; 183:278-89. [PMID: 17011219 DOI: 10.1016/j.jmr.2006.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 05/12/2023]
Abstract
The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo 1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where shimming of specific anatomical regions inherently requires strong shim fields.
Collapse
Affiliation(s)
- Christoph Juchem
- Max-Planck Institute for Biological Cybernetics, Department of Physiology of Cognitive Processes, Spemannstrasse 38, 72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
13
|
Juchem C, Logothetis NK, Pfeuffer J. High-resolution1H chemical shift imaging in the monkey visual cortex. Magn Reson Med 2005; 54:1541-6. [PMID: 16206143 DOI: 10.1002/mrm.20687] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Functionally distinct anatomic subdivisions of the brain can often be only a few millimeters in one or more dimensions. The study of metabolic differences in such structures by means of localized in vivo MR spectroscopy is therefore challenging, if not impossible. In fact, the spatial resolution of chemical shift imaging (CSI) in humans is typically in the range of centimeters. The aim of the present study was to optimize (1)H CSI in monkeys and demonstrate the feasibility of high spatial resolutions up to 1.4 x 2 x 1.4 mm(3). The obtained spatial resolution permitted the segregation of gray and white matter in the visual cortex based on the concentration of different metabolites and neurotransmitters like N-acetylaspartate, glutamate, and creatine. Concentration ratios of white matter versus gray matter tissue as well as between metabolites matched those reported in the literature from healthy human brain, demonstrating the consistency and reliability of the procedure.
Collapse
Affiliation(s)
- Christoph Juchem
- Max-Planck Institute for Biological Cybernetics, Department Physiology of Cognitive Processes, Tübingen, Germany
| | | | | |
Collapse
|
14
|
Logothetis NK, Pfeuffer J. On the nature of the BOLD fMRI contrast mechanism. Magn Reson Imaging 2004; 22:1517-31. [PMID: 15707801 DOI: 10.1016/j.mri.2004.10.018] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
Since its development about 15 years ago, functional magnetic resonance imaging (fMRI) has become the leading research tool for mapping brain activity. The technique works by detecting the levels of oxygen in the blood, point by point, throughout the brain. In other words, it relies on a surrogate signal, resulting from changes in oxygenation, blood volume and flow, and does not directly measure neural activity. Although a relationship between changes in brain activity and blood flow has long been speculated, indirectly examined and suggested and surely anticipated and expected, the neural basis of the fMRI signal was only recently demonstrated directly in experiments using combined imaging and intracortical recordings. In the present paper, we discuss the results obtained from such combined experiments. We also discuss our current knowledge of the extracellularly measured signals of the neural processes that they represent and of the structural and functional neurovascular coupling, which links such processes with the hemodynamic changes that offer the surrogate signal that we use to map brain activity. We conclude by considering applications of invasive MRI, including injections of paramagnetic tracers for the study of connectivity in the living animal and simultaneous imaging and electrical microstimulation.
Collapse
Affiliation(s)
- Nikos K Logothetis
- Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, 72076 Tübingen, Germany.
| | | |
Collapse
|