1
|
Wang Q, Yang C, Chen S, Li J. Miniaturized Electrochemical Sensing Platforms for Quantitative Monitoring of Glutamate Dynamics in the Central Nervous System. Angew Chem Int Ed Engl 2024; 63:e202406867. [PMID: 38829963 DOI: 10.1002/anie.202406867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
Glutamate is one of the most important excitatory neurotransmitters within the mammalian central nervous system. The role of glutamate in regulating neural network signaling transmission through both synaptic and extra-synaptic paths highlights the importance of the real-time and continuous monitoring of its concentration and dynamics in living organisms. Progresses in multidisciplinary research have promoted the development of electrochemical glutamate sensors through the co-design of materials, interfaces, electronic devices, and integrated systems. This review summarizes recent works reporting various electrochemical sensor designs and their applicability as miniaturized neural probes to in vivo sensing within biological environments. We start with an overview of the role and physiological significance of glutamate, the metabolic routes, and its presence in various bodily fluids. Next, we discuss the design principles, commonly employed validation models/protocols, and successful demonstrations of multifunctional, compact, and bio-integrated devices in animal models. The final section provides an outlook on the development of the next generation glutamate sensors for neuroscience and neuroengineering, with the aim of offering practical guidance for future research.
Collapse
Affiliation(s)
- Qi Wang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Chunyu Yang
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Nelson SJ, Ozhinsky E, Li Y, Park IW, Crane J. Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:187-97. [PMID: 23453759 PMCID: PMC3808990 DOI: 10.1016/j.jmr.2013.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/01/2013] [Accepted: 02/01/2013] [Indexed: 05/13/2023]
Abstract
In vivo MRSI is an important imaging modality that has been shown in numerous research studies to give biologically relevant information for assessing the underlying mechanisms of disease and for monitoring response to therapy. The increasing availability of high field scanners and multichannel radiofrequency coils has provided the opportunity to acquire in vivo data with significant improvements in sensitivity and signal to noise ratio. These capabilities may be used to shorten acquisition time and provide increased coverage. The ability to acquire rapid, volumetric MRSI data is critical for examining heterogeneity in metabolic profiles and for relating serial changes in metabolism within the same individual during the course of the disease. In this review we discuss the implementation of strategies that use alternative k-space sampling trajectories and parallel imaging methods in order to speed up data acquisition. The impact of such methods is demonstrated using three recent examples of how these methods have been applied. These are to the acquisition of robust 3D (1)H MRSI data within 5-10 min at a field strength of 3 T, to obtaining higher sensitivity for (1)H MRSI at 7 T and to using ultrafast volumetric and dynamic (13)C MRSI for monitoring the changes in signals that occur following the injection of hyperpolarized (13)C agents.
Collapse
Affiliation(s)
- Sarah J Nelson
- Surbeck Laboratory for Advanced Imaging, Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94158-2330, USA.
| | | | | | | | | |
Collapse
|
3
|
Metabolite Mapping with Extended Brain Coverage Using a Fast Multisection MRSI Pulse Sequence and a Multichannel Coil. Int J Biomed Imaging 2012; 2012:247161. [PMID: 22505879 PMCID: PMC3296215 DOI: 10.1155/2012/247161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 11/16/2011] [Indexed: 12/04/2022] Open
Abstract
Multisection magnetic resonance spectroscopic imaging is a widely used pulse sequence that has distinct advantages over other spectroscopic imaging sequences, such as dynamic shimming, large region-of-interest coverage within slices, and rapid data acquisition. It has limitations, however, in the number of slices that can be acquired in realistic scan times and information loss from spacing between slices. In this paper, we synergize the multi-section spectroscopic imaging pulse sequence with multichannel coil technology to overcome these limitations. These combined techniques now permit elimination of the gaps between slices and acquisition of a larger number of slices to realize the whole brain metabolite mapping without incurring the penalties of longer repetition times (and therefore longer acquisition times) or lower signal-to-noise ratios.
Collapse
|
4
|
Noworolski SM, Reed GD, Kurhanewicz J, Vigneron DB. Post-processing correction of the endorectal coil reception effects in MR spectroscopic imaging of the prostate. J Magn Reson Imaging 2011; 32:654-62. [PMID: 20815064 DOI: 10.1002/jmri.22258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To develop and validate a post-processing correction algorithm to remove the effect of the inhomogeneous reception profile of the endorectal coil on MR spectroscopic imaging (MRSI) data. MATERIALS AND METHODS A post-processing algorithm to correct for the endorectal coil reception effects on MRSI data was developed based upon theoretical modeling of the endorectal coil reception profile and of the spatial saturation pulse profiles. This algorithm was evaluated on three-dimensional (3D) MRSI data acquired at 3T from a uniform phantom and from 18 patients with known or suspected prostate cancer. RESULTS For the phantom data, the coefficient of variation of metabolite peak areas decreased 16% to 46% and the peak area distributions became more Gaussian with correction, as demonstrated by higher Q-Q plot linear correlations (R(2) = 0.98 +/- 0.007 vs. R(2) = 0.89 +/- 0.066). Across the 18 patients, the mean coefficient of variation for suppressed water decreased significantly, from 0.95 +/- 0.18, to 0.66 +/- 0.11, (P < 10(-6), paired t-test) and the linear correlations of the Q-Q plots for the suppressed water increased from R(2) = 0.91 to R(2) = 0.95 (P = 0.0083, paired t-test) with correction. CONCLUSION An algorithm for reducing the effect of the inhomogeneous reception profile in endorectal coil acquired 3D MRSI prostate data was demonstrated, illustrating increased homogeneity and more Gaussian peak area distributions.
Collapse
Affiliation(s)
- Susan M Noworolski
- The Center for Molecular and Functional Imaging, Department of Radiology and Biomedical Imaging, The University of California, San Francisco, California 94107, USA.
| | | | | | | |
Collapse
|
5
|
Dong Z, Peterson BS. Spectral resolution amelioration by deconvolution (SPREAD) in MR spectroscopic imaging. J Magn Reson Imaging 2009; 29:1395-405. [PMID: 19472414 DOI: 10.1002/jmri.21784] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To develop, implement, and evaluate a novel postprocessing method for enhancing the spectral resolution of in vivo MR spectroscopic imaging (MRSI) data. MATERIALS AND METHODS Magnetic field inhomogeneity across the imaging volume was determined by acquiring MRI datasets with two differing echo times. The lineshapes of the MRSI spectra were derived from these field maps by simulating an MRSI scan of a virtual sample whose resonance frequencies varied according to the observed variations in the magnetic field. By deconvolving the lineshapes from the measured MRSI spectra, the linebroadening effects of the field inhomogeneities were reduced significantly. RESULTS Both phantom and in vivo proton MRSI spectra exhibited significantly enhanced spectral resolutions and improved spectral lineshapes following application of our method. Quantitative studies on a phantom show that, on average, the full width at half maximum of water peaks was reduced 42%, the full width at tenth maximum was reduced 38%, and the asymmetries of the peaks were reduced 86%. CONCLUSION Our method reduces the linebroadening and lineshape distortions caused by magnetic field inhomogeneities. It substantially improves the spectral resolution and lineshape of MRSI data.
Collapse
Affiliation(s)
- Zhengchao Dong
- Department of Psychiatry, Columbia University College of Physicians & Surgeons, New York, NY, USA.
| | | |
Collapse
|
6
|
Dong Z, Dreher W, Leibfritz D, Peterson BS. Challenges of using MR spectroscopy to detect neural progenitor cells in vivo. AJNR Am J Neuroradiol 2009; 30:1096-101. [PMID: 19357383 DOI: 10.3174/ajnr.a1557] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A recent report of detection of neural progenitor cells (NPCs) in living human brain by using in vivo proton MR spectroscopy ((1)H-MR spectroscopy) has sparked great excitement in the field of biomedicine because of its potential influence and utility in clinical neuroscience research. On the other hand, the method used and the findings described in the report also caused heated debate and controversy. In this article, we will briefly detail the reasons for the debate and controversy from the point of view of the in vivo (1)H-MR spectroscopy methodology and will propose some technical strategies in both data acquisition and data processing to improve the feasibility of detecting NPCs in future studies by using in vivo (1)H-MR spectroscopy.
Collapse
Affiliation(s)
- Z Dong
- Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | | | | | | |
Collapse
|
7
|
Jissendi Tchofo P, Balériaux D. Brain 1H-MR spectroscopy in clinical neuroimaging at 3T. J Neuroradiol 2009; 36:24-40. [DOI: 10.1016/j.neurad.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Abstract
Molecular imaging of tumor metabolism has gained considerable interest, since preclinical studies have indicated a close relationship between the activation of various oncogenes and alterations of cellular metabolism. Furthermore, several clinical trials have shown that metabolic imaging can significantly impact patient management by improving tumor staging, restaging, radiation treatment planning, and monitoring of tumor response to therapy. In this review, we summarize recent data on the molecular mechanisms underlying the increased metabolic activity of cancer cells and discuss imaging techniques for studies of tumor glucose, lipid, and amino acid metabolism.
Collapse
Affiliation(s)
- Christian Plathow
- Department of Nuclear Medicine, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
9
|
Proton magnetic resonance spectroscopic imaging in newly diagnosed glioblastoma: predictive value for the site of postradiotherapy relapse in a prospective longitudinal study. Int J Radiat Oncol Biol Phys 2008; 70:773-81. [PMID: 18262090 DOI: 10.1016/j.ijrobp.2007.10.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 10/26/2007] [Accepted: 10/30/2007] [Indexed: 11/24/2022]
Abstract
PURPOSE To investigate the association between magnetic resonance spectroscopic imaging (MRSI)-defined, metabolically abnormal tumor regions and subsequent sites of relapse in data from patients treated with radiotherapy (RT) in a prospective clinical trial. METHODS AND MATERIALS Twenty-three examinations were performed prospectively for 9 patients with newly diagnosed glioblastoma multiforme studied in a Phase I trial combining Tipifarnib and RT. The patients underwent magnetic resonance imaging (MRI) and MRSI before treatment and every 2 months until relapse. The MRSI data were categorized by the choline (Cho)/N-acetyl-aspartate (NAA) ratio (CNR) as a measure of spectroscopic abnormality. CNRs corresponding to T1 and T2 MRI for 1,207 voxels were evaluated before RT and at recurrence. RESULTS Before treatment, areas of CNR2 (CNR > or =2) represented 25% of the contrast-enhancing (T1CE) regions and 10% of abnormal T2 regions outside T1CE (HyperT2). The presence of CNR2 was often an early indicator of the site of relapse after therapy. In fact, 75% of the voxels within the T1CE+CNR2 before therapy continued to exhibit CNR2 at relapse, compared with 22% of the voxels within the T1CE with normal CNR (p < 0.05). The location of new contrast enhancement with CNR2 corresponded in 80% of the initial HyperT2+CNR2 vs. 20.7% of the HyperT2 voxels with normal CNR (p < 0.05). CONCLUSION Metabolically active regions represented a small percentage of pretreatment MRI abnormalities and were predictive for the site of post-RT relapse. The incorporation of MRSI data in the definition of RT target volumes for selective boosting may be a promising avenue leading to increased local control of glioblastomas.
Collapse
|
10
|
Mlynárik V, Kohler I, Gambarota G, Vaslin A, Clarke PGH, Gruetter R. Quantitative proton spectroscopic imaging of the neurochemical profile in rat brain with microliter resolution at ultra-short echo times. Magn Reson Med 2008; 59:52-8. [PMID: 18050343 DOI: 10.1002/mrm.21447] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proton spectroscopy allows the simultaneous quantification of a high number of metabolite concentrations termed the neurochemical profile. The spin echo full intensity acquired localization (SPECIAL) scheme with an echo time of 2.7 ms was used at 9.4T for excitation of a slab parallel to a home-built quadrature surface coil in conjunction with phase encoding in the two remaining spatial dimensions to yield an effective spatial resolution of 1.7 microL. The absolute concentrations of at least 10 metabolites were calculated from the spectra of individual voxels using LCModel analysis. The calculated concentrations were used for constructing quantitative metabolic maps of the neurochemical profile in normal and pathological rat brain. Summation of individual spectra was used to assess the neurochemical profile of unique brain regions, such as corpus callosum, in rat for the first time. Following focal ischemia in rat pups, imaging the neurochemical profile indicated increased choline groups in the ischemic core and increased glutamine in the penumbra, which is proposed to reflect glutamate excitotoxicity. We conclude that it is feasible to achieve a sensitivity that is sufficient for quantitative mapping of the neurochemical profile at microliter spatial resolution.
Collapse
Affiliation(s)
- Vladimír Mlynárik
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
11
|
Osorio JA, Ozturk-Isik E, Xu D, Cha S, Chang S, Berger MS, Vigneron DB, Nelson SJ. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil. J Magn Reson Imaging 2007; 26:23-30. [PMID: 17659562 DOI: 10.1002/jmri.20970] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. MATERIALS AND METHODS A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). RESULTS The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. CONCLUSION The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes.
Collapse
Affiliation(s)
- Joseph A Osorio
- UCSF/UCB Joint Graduate Group in Bioengineering, University of California-San Francisco, San Francisco, California 94158-2532, USA.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Cecil KM, Kos RS. Magnetic resonance spectroscopy and metabolic imaging in white matter diseases and pediatric disorders. Top Magn Reson Imaging 2007; 17:275-93. [PMID: 17415001 DOI: 10.1097/rmr.0b013e318033787e] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides the reader with an overview of the magnetic resonance spectroscopy technique and the clinical, pathological, imaging, and metabolic features for select white matter disorders of interest. With this composite summary, the reader should find it easier to implement and interpret spectroscopy in the clinical setting for the diagnosis and monitoring of patients with white matter disorders.
Collapse
Affiliation(s)
- Kim M Cecil
- Department of Radiology and Pediatrics, Cincinnati Children's Hospital Medical Center and the College of Medicine of the University of Cincinnati, Cincinnati, OH 45229, USA.
| | | |
Collapse
|
13
|
Di Costanzo A, Trojsi F, Tosetti M, Schirmer T, Lechner SM, Popolizio T, Scarabino T. Proton MR spectroscopy of the brain at 3 T: an update. Eur Radiol 2007; 17:1651-62. [PMID: 17235536 DOI: 10.1007/s00330-006-0546-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2006] [Revised: 11/07/2006] [Accepted: 11/14/2006] [Indexed: 01/20/2023]
Abstract
Proton magnetic resonance spectroscopy ((1)H-MRS) provides specific metabolic information not otherwise observable by any other imaging method. (1)H-MRS of the brain at 3 T is a new tool in the modern neuroradiological armamentarium whose main advantages, with respect to the well-established and technologically advanced 1.5-T (1)H-MRS, include a higher signal-to-noise ratio, with a consequent increase in spatial and temporal resolutions, and better spectral resolution. These advantages allow the acquisition of higher quality and more easily quantifiable spectra in smaller voxels and/or in shorter times, and increase the sensitivity in metabolite detection. However, these advantages may be hampered by intrinsic field-dependent technical issues, such as decreased T(2) signal, chemical shift dispersion errors, J-modulation anomalies, increased magnetic susceptibility, eddy current artifacts, challenges in designing and obtaining appropriate radiofrequency coils, magnetic field instability and safety hazards. All these limitations have been tackled by manufacturers and researchers and have received one or more solutions. Furthermore, advanced (1)H-MRS techniques, such as specific spectral editing, fast (1)H-MRS imaging and diffusion tensor (1)H-MRS imaging, have been successfully implemented at 3 T. However, easier and more robust implementations of these techniques are still needed before they can become more widely used and undertake most of the clinical and research (1)H-MRS applications.
Collapse
|