1
|
Romanelli G, Capuani S, Onorati D, Ulpiani P, Preziosi E, Andreani C, Senesi R. Fluorinated borono-phenylalanine for optimizing BNCT: Enhancing boron absorption against hydrogen scattering for thermal neutrons. Med Phys 2024; 51:439-446. [PMID: 37956252 DOI: 10.1002/mp.16802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/14/2023] [Accepted: 07/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Boron-containing compounds, such as 4-borono-phenylalanine (BPA) are used as drugs for cancer treatment in the framework of Boron Neutron Capture Therapy (BNCT). Neutron irradiation of boron-rich compounds delivered to cancer cells triggers nuclear reactions that destroy cancer cells. PURPOSE We provide a modeling of the thermal neutron cross section of BPA, a drug used in Boron Neutron Capture Therapy (BNCT), to quantify the competing contributions of boron absorption against hydrogen scattering, for optimizing BNCT by minimizing the latter. METHODS We perform the experimental determination of the total neutron scattering cross section of BPA at thermal and epithermal neutron energies using neutron transmission measurements. We isolate the contribution related to the incoherent scattering by hydrogen atoms as a function of the neutron energy by means of the Average Functional Group Approximation, and we calculate the probability for a neutron of being absorbed as a function of the neutron energy both for BPA and for its variants where either one or all four aromatic hydrogen atoms are substituted by 19 F, and both for the samples with natural occurrence or enriched concentration of 10 B. RESULTS While referring to the already available literature for in vivo use of fluorinated BPA, we show that fluorine-rich variants of BPA increase the probability of neutrons being captured by the molecule. As the higher absorption efficiency of fluorinated BPA does not depend on whether the molecule is used in vivo or not, our results are promising for the higher efficiency of the boron neutron capture treatment. CONCLUSIONS Our results suggest a new advantage using fluorinated compounds for BNCT, in their optimized interaction with neutrons, in addition to their already known capability to be used for monitoring and pharmacokinetics studies using 19 F-Nuclear Magnetic Resonance or in 18 F-Positron Emission Tomography.
Collapse
Affiliation(s)
- Giovanni Romanelli
- Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Silvia Capuani
- National Research Council, Institute for Complex Systems (ISC), Rome, Italy
| | - Dalila Onorati
- Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Pierfrancesco Ulpiani
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Enrico Preziosi
- Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| | - Carla Andreani
- Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma "Tor Vergata", Rome, Italy
- National Research Council, Institute of Polymers, Composites and Biomaterials (IPCB), Naples, Italy
| | - Roberto Senesi
- Dipartimento di Fisica and NAST Centre, Università degli Studi di Roma "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
3
|
Volovetsky AB, Sukhov VS, Balalaeva IV, Dudenkova VV, Shilyagina NY, Feofanov АV, Efremenko AV, Grin MA, Mironov AF, Sivaev IB, Bregadze VI, Maslennikova AV. Pharmacokinetics of Chlorin e₆-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma. Int J Mol Sci 2017; 18:E2556. [PMID: 29182594 PMCID: PMC5751159 DOI: 10.3390/ijms18122556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/14/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e₆-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e₆-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.
Collapse
Affiliation(s)
- Arthur B Volovetsky
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
| | - Vladimir S Sukhov
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
| | - Irina V Balalaeva
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
| | - Varvara V Dudenkova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
- Department of Oncology, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| | - Natalia Yu Shilyagina
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
| | - Аlexey V Feofanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, Vorobyevi Gori 1, 119992 Moscow, Russia.
| | - Anastasija V Efremenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia.
- Biological Faculty, Lomonosov Moscow State University, Vorobyevi Gori 1, 119992 Moscow, Russia.
| | - Mikhail A Grin
- Institute of Fine Chemical Technology, Moscow Technological University, 86 Vernadskii Av., 119571 Moscow, Russia.
| | - Andrey F Mironov
- Institute of Fine Chemical Technology, Moscow Technological University, 86 Vernadskii Av., 119571 Moscow, Russia.
| | - Igor B Sivaev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia.
| | - Vladimir I Bregadze
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Str., 119991 Moscow, Russia.
| | - Anna V Maslennikova
- Department of Biophysics, Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Av., 603950 Nizhny Novgorod, Russia.
- Department of Oncology, Nizhny Novgorod State Medical Academy, 10/1 Minin and Pozharsky Sq., 603005 Nizhny Novgorod, Russia.
| |
Collapse
|
4
|
Terreno E, Castelli DD, Viale A, Aime S. Challenges for molecular magnetic resonance imaging. Chem Rev 2010; 110:3019-42. [PMID: 20415475 DOI: 10.1021/cr100025t] [Citation(s) in RCA: 567] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Enzo Terreno
- Department of Chemistry IFM and Molecular Imaging Center, University of Torino, Torino, Italy
| | | | | | | |
Collapse
|