1
|
Virostko J, Hainline A, Kang H, Arlinghaus LR, Abramson RG, Barnes SL, Blume JD, Avery S, Patt D, Goodgame B, Yankeelov TE, Sorace AG. Dynamic contrast-enhanced magnetic resonance imaging and diffusion-weighted magnetic resonance imaging for predicting the response of locally advanced breast cancer to neoadjuvant therapy: a meta-analysis. J Med Imaging (Bellingham) 2017; 5:011011. [PMID: 29201942 PMCID: PMC5701084 DOI: 10.1117/1.jmi.5.1.011011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022] Open
Abstract
This meta-analysis assesses the prognostic value of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) performed during neoadjuvant therapy (NAT) of locally advanced breast cancer. A systematic literature search was conducted to identify studies of quantitative DCE-MRI and DW-MRI performed during breast cancer NAT that report the sensitivity and specificity for predicting pathological complete response (pCR). Details of the study population and imaging parameters were extracted from each study for subsequent meta-analysis. Metaregression analysis, subgroup analysis, study heterogeneity, and publication bias were assessed. Across 10 studies that met the stringent inclusion criteria for this meta-analysis (out of 325 initially identified studies), we find that MRI had a pooled sensitivity of 0.91 [95% confidence interval (CI), 0.80 to 0.96] and specificity of 0.81(95% CI, 0.68 to 0.89) when adjusted for covariates. Quantitative DCE-MRI exhibits greater specificity for predicting pCR than semiquantitative DCE-MRI (p<0.001). Quantitative DCE-MRI and DW-MRI are able to predict, early in the course of NAT, the eventual response of breast tumors, with a high level of specificity and sensitivity. However, there is a high degree of heterogeneity in published studies highlighting the lack of standardization in the field.
Collapse
Affiliation(s)
- John Virostko
- University of Texas at Austin, Department of Diagnostics, Austin, Texas, United States.,University of Texas at Austin, Livestrong Cancer Institutes, Austin, Texas, United States
| | - Allison Hainline
- Vanderbilt University, Department of Biostatistics, Nashville, Tennessee, United States
| | - Hakmook Kang
- Vanderbilt University, Department of Biostatistics, Nashville, Tennessee, United States.,Vanderbilt University, Center for Quantitative Sciences, Nashville, Tennessee, United States
| | - Lori R Arlinghaus
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Richard G Abramson
- Vanderbilt University, Center for Quantitative Sciences, Nashville, Tennessee, United States.,Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Stephanie L Barnes
- University of Texas at Austin, Institute for Computational and Engineering Sciences, Austin, Texas, United States.,University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Jeffrey D Blume
- Vanderbilt University, Department of Biostatistics, Nashville, Tennessee, United States
| | - Sarah Avery
- Austin Radiological Association, Austin, Texas, United States
| | - Debra Patt
- Texas Oncology, Austin, Texas, United States
| | - Boone Goodgame
- Seton Hospital, Austin, Texas, United States.,University of Texas at Austin, Department of Medicine, Austin, Texas, United States
| | - Thomas E Yankeelov
- University of Texas at Austin, Department of Diagnostics, Austin, Texas, United States.,University of Texas at Austin, Livestrong Cancer Institutes, Austin, Texas, United States.,University of Texas at Austin, Institute for Computational and Engineering Sciences, Austin, Texas, United States.,University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas, United States
| | - Anna G Sorace
- University of Texas at Austin, Department of Diagnostics, Austin, Texas, United States.,University of Texas at Austin, Livestrong Cancer Institutes, Austin, Texas, United States
| |
Collapse
|
2
|
Alic L, Niessen WJ, Veenland JF. Quantification of heterogeneity as a biomarker in tumor imaging: a systematic review. PLoS One 2014; 9:e110300. [PMID: 25330171 PMCID: PMC4203782 DOI: 10.1371/journal.pone.0110300] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Many techniques are proposed for the quantification of tumor heterogeneity as an imaging biomarker for differentiation between tumor types, tumor grading, response monitoring and outcome prediction. However, in clinical practice these methods are barely used. This study evaluates the reported performance of the described methods and identifies barriers to their implementation in clinical practice. METHODOLOGY The Ovid, Embase, and Cochrane Central databases were searched up to 20 September 2013. Heterogeneity analysis methods were classified into four categories, i.e., non-spatial methods (NSM), spatial grey level methods (SGLM), fractal analysis (FA) methods, and filters and transforms (F&T). The performance of the different methods was compared. PRINCIPAL FINDINGS Of the 7351 potentially relevant publications, 209 were included. Of these studies, 58% reported the use of NSM, 49% SGLM, 10% FA, and 28% F&T. Differentiation between tumor types, tumor grading and/or outcome prediction was the goal in 87% of the studies. Overall, the reported area under the curve (AUC) ranged from 0.5 to 1 (median 0.87). No relation was found between the performance and the quantification methods used, or between the performance and the imaging modality. A negative correlation was found between the tumor-feature ratio and the AUC, which is presumably caused by overfitting in small datasets. Cross-validation was reported in 63% of the classification studies. Retrospective analyses were conducted in 57% of the studies without a clear description. CONCLUSIONS In a research setting, heterogeneity quantification methods can differentiate between tumor types, grade tumors, and predict outcome and monitor treatment effects. To translate these methods to clinical practice, more prospective studies are required that use external datasets for validation: these datasets should be made available to the community to facilitate the development of new and improved methods.
Collapse
Affiliation(s)
- Lejla Alic
- Biomedical Imaging Group Rotterdam, Department of Radiology and Medical Informatics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Intelligent Imaging, Netherlands Organization for Applied Scientific Research (TNO), The Hague, The Netherlands
| | - Wiro J. Niessen
- Biomedical Imaging Group Rotterdam, Department of Radiology and Medical Informatics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Jifke F. Veenland
- Biomedical Imaging Group Rotterdam, Department of Radiology and Medical Informatics, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|