1
|
Sepulveda P, Sitaram R, Rana M, Montalba C, Tejos C, Ruiz S. How feedback, motor imagery, and reward influence brain self-regulation using real-time fMRI. Hum Brain Mapp 2016; 37:3153-71. [PMID: 27272616 DOI: 10.1002/hbm.23228] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/15/2016] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
The learning process involved in achieving brain self-regulation is presumed to be related to several factors, such as type of feedback, reward, mental imagery, duration of training, among others. Explicitly instructing participants to use mental imagery and monetary reward are common practices in real-time fMRI (rtfMRI) neurofeedback (NF), under the assumption that they will enhance and accelerate the learning process. However, it is still not clear what the optimal strategy is for improving volitional control. We investigated the differential effect of feedback, explicit instructions and monetary reward while training healthy individuals to up-regulate the blood-oxygen-level dependent (BOLD) signal in the supplementary motor area (SMA). Four groups were trained in a two-day rtfMRI-NF protocol: GF with NF only, GF,I with NF + explicit instructions (motor imagery), GF,R with NF + monetary reward, and GF,I,R with NF + explicit instructions (motor imagery) + monetary reward. Our results showed that GF increased significantly their BOLD self-regulation from day-1 to day-2 and GF,R showed the highest BOLD signal amplitude in SMA during the training. The two groups who were instructed to use motor imagery did not show a significant learning effect over the 2 days. The additional factors, namely motor imagery and reward, tended to increase the intersubject variability in the SMA during the course of training. Whole brain univariate and functional connectivity analyses showed common as well as distinct patterns in the four groups, representing the varied influences of feedback, reward, and instructions on the brain. Hum Brain Mapp 37:3153-3171, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pradyumna Sepulveda
- Biomedical Imaging Center, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Electrical Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile.,Laboratory of Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Laboratory of Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica De Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica De Chile, Santiago, Chile.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Mohit Rana
- Laboratory of Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Cristian Montalba
- Biomedical Imaging Center, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Cristian Tejos
- Biomedical Imaging Center, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Electrical Engineering, Pontificia Universidad Católica De Chile, Santiago, Chile
| | - Sergio Ruiz
- Laboratory of Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica De Chile, Santiago, Chile.,Department of Psychiatry, Faculty of Medicine, Interdisciplinary Center for Neuroscience, Pontificia Universidad Católica De Chile, Santiago, Chile.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Posse S, Ackley E, Mutihac R, Zhang T, Hummatov R, Akhtari M, Chohan M, Fisch B, Yonas H. High-speed real-time resting-state FMRI using multi-slab echo-volumar imaging. Front Hum Neurosci 2013; 7:479. [PMID: 23986677 PMCID: PMC3752525 DOI: 10.3389/fnhum.2013.00479] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/29/2013] [Indexed: 11/21/2022] Open
Abstract
We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications.
Collapse
Affiliation(s)
- Stefan Posse
- Department of Neurology, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, The University of New Mexico, Albuquerque, NM, USA
- Department of Physics and Astronomy, The University of New Mexico, Albuquerque, NM, USA
| | - Elena Ackley
- Department of Neurology, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Radu Mutihac
- Department of Physics, University of Bucharest, Bucharest, Romania
- Division of Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Tongsheng Zhang
- Department of Neurology, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Ruslan Hummatov
- Department of Physics and Astronomy, The University of New Mexico, Albuquerque, NM, USA
| | - Massoud Akhtari
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA
| | - Muhammad Chohan
- Department of Neurosurgery, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Bruce Fisch
- Department of Neurology, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| | - Howard Yonas
- Department of Neurosurgery, School of Medicine, The University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
3
|
Doyle OM, Ashburner J, Zelaya FO, Williams SCR, Mehta MA, Marquand AF. Multivariate decoding of brain images using ordinal regression. Neuroimage 2013; 81:347-357. [PMID: 23684876 PMCID: PMC4068378 DOI: 10.1016/j.neuroimage.2013.05.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 04/26/2013] [Accepted: 05/03/2013] [Indexed: 11/26/2022] Open
Abstract
Neuroimaging data are increasingly being used to predict potential outcomes or groupings, such as clinical severity, drug dose response, and transitional illness states. In these examples, the variable (target) we want to predict is ordinal in nature. Conventional classification schemes assume that the targets are nominal and hence ignore their ranked nature, whereas parametric and/or non-parametric regression models enforce a metric notion of distance between classes. Here, we propose a novel, alternative multivariate approach that overcomes these limitations — whole brain probabilistic ordinal regression using a Gaussian process framework. We applied this technique to two data sets of pharmacological neuroimaging data from healthy volunteers. The first study was designed to investigate the effect of ketamine on brain activity and its subsequent modulation with two compounds — lamotrigine and risperidone. The second study investigates the effect of scopolamine on cerebral blood flow and its modulation using donepezil. We compared ordinal regression to multi-class classification schemes and metric regression. Considering the modulation of ketamine with lamotrigine, we found that ordinal regression significantly outperformed multi-class classification and metric regression in terms of accuracy and mean absolute error. However, for risperidone ordinal regression significantly outperformed metric regression but performed similarly to multi-class classification both in terms of accuracy and mean absolute error. For the scopolamine data set, ordinal regression was found to outperform both multi-class and metric regression techniques considering the regional cerebral blood flow in the anterior cingulate cortex. Ordinal regression was thus the only method that performed well in all cases. Our results indicate the potential of an ordinal regression approach for neuroimaging data while providing a fully probabilistic framework with elegant approaches for model selection. Often in neuroimaging the independent variables are ranked or ordered. Classification and regression models cannot explicitly model an ordinal target. We present a novel multivariate ordinal regression approach for neuroimaging data. Our results show that ordinal regression is a powerful method for ranking data.
Collapse
Affiliation(s)
- O M Doyle
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - J Ashburner
- Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London WC1N 3BG, UK.
| | - F O Zelaya
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - S C R Williams
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - M A Mehta
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| | - A F Marquand
- King's College London, Department of Neuroimaging, Institute of Psychiatry (PO89), De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|