1
|
Zhao W, Zhang D, Mao X. Application of Artificial Intelligence in Radiotherapy of Nasopharyngeal Carcinoma with Magnetic Resonance Imaging. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4132989. [PMID: 35154619 PMCID: PMC8828321 DOI: 10.1155/2022/4132989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/25/2021] [Accepted: 12/10/2021] [Indexed: 11/23/2022]
Abstract
The value of automatic organ-at-risk outlining software for radiotherapy is based on artificial intelligence technology in clinical applications. The accuracy of automatic segmentation of organs at risk (OARs) in radiotherapy for nasopharyngeal carcinoma was investigated. In the automatic segmentation model which is proposed in this paper, after CT scans and manual segmentation by physicians, CT images of 147 nasopharyngeal cancer patients and their corresponding outlined OARs structures were selected and grouped into a training set (115 cases), a validation set (12 cases), and a test set (20 cases) by complete randomization. Adaptive histogram equalization is used to preprocess the CT images. End-to-end training is utilized to improve modeling efficiency and an improved network based on 3D Unet (AUnet) is implemented to introduce organ size as prior knowledge into the convolutional kernel size design to enable the network to adaptively extract features from organs of different sizes, thus improving the performance of the model. The DSC (Dice Similarity Coefficient) coefficients and Hausdorff (HD) distances of automatic and manual segmentation are compared to verify the effectiveness of the AUnet network. The mean DSC and HD of the test set were 0.86 ± 0.02 and 4.0 ± 2.0 mm, respectively. Except for optic nerve and optic cross, there was no statistical difference between AUnet and manual segmentation results (P > 0.05). With the introduction of the adaptive mechanism, AUnet can achieve automatic segmentation of the endangered organs of nasopharyngeal carcinoma based on CT images more accurately, which can substantially improve the efficiency and consistency of segmentation of doctors in clinical applications.
Collapse
Affiliation(s)
- Wanlu Zhao
- Radiotherapy Department, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou 313003, China
| | - Desheng Zhang
- Radiology Department, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou 313003, China
| | - Xinjian Mao
- Radiotherapy Department, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou 313003, China
| |
Collapse
|
2
|
Imaging of Complications of Chemoradiation. Neuroimaging Clin N Am 2021; 32:93-109. [PMID: 34809846 DOI: 10.1016/j.nic.2021.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemoradiation for head and neck cancer is associated with a variety of early and late complications. Toxicities may affect the aero-digestive tract (mucositis, salivary gland injury), regional osseous and cartilaginous structures (osteoradionecrosis (ORN) and chondronecrosis), vasculature (progressive radiation vasculopathy and carotid blow out syndromes), and neural structures (optic neuritis, myelitis, and brain injury). These may be difficult to distinguish from tumor recurrence on imaging, and may necessitate the use of advanced MRI and molecular imaging techniques to reach the correct diagnosis. Secondary radiation-induced malignancies include thyroid cancer and a variety of sarcomas that may manifest several years after treatment. Checkpoint inhibitors can cause a variety of adverse immune events, including autoimmune hypophysitis and encephalitis.
Collapse
|
3
|
Stieb S, Elgohari B, Fuller CD. Repetitive MRI of organs at risk in head and neck cancer patients undergoing radiotherapy. Clin Transl Radiat Oncol 2019; 18:131-139. [PMID: 31341989 PMCID: PMC6630152 DOI: 10.1016/j.ctro.2019.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
First review on MRI changes in head and neck organs at risk during radiotherapy. Focus on dynamics in salivary gland, muscle and bone in the head and neck region. Pointing out the limitations in implementing MRI in guiding radiation therapy.
With emerging technical advances like real-time MR imaging during radiotherapy (RT) with an integrated MR linear accelerator, it will soon be possible to analyze changes in the organs at risk (OARs) during radiotherapy without additional effort for the patients. Until then, patients have to undergo additional MR imaging and often without the same immobilization devices as used for radiotherapy. Consequently, studies with repetitive MRI during the course of radiotherapy are rare, with low patient numbers and with the challenge of registration between the different MR sequences and the varying imaging time points. This review focuses on studies with at least two MRIs, one before and another either during or post-RT, in order to report on RT-induced changes in normal tissues and their correlation with toxicity. We therefore included clinical studies published in English until March 2019, with repetitive MRI of OARs in head and neck cancer patients receiving external beam radiotherapy. OARs analyzed were salivary glands, musculoskeletal structures and bones. MR sequences used included T1, T2, dynamic contrast enhanced (DCE) imaging, diffusion-weighted imaging (DWI), DIXON and MR sialography.
Collapse
Affiliation(s)
- Sonja Stieb
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Baher Elgohari
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Clinical Oncology and Nuclear Medicine, Mansoura University, Mansoura, Egypt
| | - Clifton David Fuller
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Dynamic contrast-enhanced magnetic resonance imaging for head and neck cancers. Sci Data 2018; 5:180008. [PMID: 29437167 PMCID: PMC5810424 DOI: 10.1038/sdata.2018.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/18/2017] [Indexed: 02/05/2023] Open
Abstract
Dynamic myraidpro contrast-enhanced magnetic resonance imaging (DCE-MRI) has been correlated with prognosis in head and neck squamous cell carcinoma as well as with changes in normal tissues. These studies implement different software, either commercial or in-house, and different scan protocols. Thus, the generalizability of the results is not confirmed. To assist in the standardization of quantitative metrics to confirm the generalizability of these previous studies, this data descriptor delineates in detail the DCE-MRI digital imaging and communications in medicine (DICOM) files with DICOM radiation therapy (RT) structure sets and digital reference objects (DROs), as well as, relevant clinical data that encompass a data set that can be used by all software for comparing quantitative metrics. Variable flip angle (VFA) with six flip angles and DCE-MRI scans with a temporal resolution of 5.5 s were acquired in the axial direction on a 3T MR scanner with a field of view of 25.6 cm, slice thickness of 4 mm, and 256×256 matrix size.
Collapse
|
5
|
A Multi-Institutional Comparison of Dynamic Contrast-Enhanced Magnetic Resonance Imaging Parameter Calculations. Sci Rep 2017; 7:11185. [PMID: 28894197 PMCID: PMC5593829 DOI: 10.1038/s41598-017-11554-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/18/2017] [Indexed: 11/15/2022] Open
Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) provides quantitative metrics (e.g. Ktrans, ve) via pharmacokinetic models. We tested inter-algorithm variability in these quantitative metrics with 11 published DCE-MRI algorithms, all implementing Tofts-Kermode or extended Tofts pharmacokinetic models. Digital reference objects (DROs) with known Ktrans and ve values were used to assess performance at varying noise levels. Additionally, DCE-MRI data from 15 head and neck squamous cell carcinoma patients over 3 time-points during chemoradiotherapy were used to ascertain Ktrans and ve kinetic trends across algorithms. Algorithms performed well (less than 3% average error) when no noise was present in the DRO. With noise, 87% of Ktrans and 84% of ve algorithm-DRO combinations were generally in the correct order. Low Krippendorff’s alpha values showed that algorithms could not consistently classify patients as above or below the median for a given algorithm at each time point or for differences in values between time points. A majority of the algorithms produced a significant Spearman correlation in ve of the primary gross tumor volume with time. Algorithmic differences in Ktrans and ve values over time indicate limitations in combining/comparing data from distinct DCE-MRI model implementations. Careful cross-algorithm quality-assurance must be utilized as DCE-MRI results may not be interpretable using differing software.
Collapse
|
6
|
Chiu SC, Cheng CC, Chang HC, Chung HW, Chiu HC, Liu YJ, Hsu HH, Juan CJ. Influence of amplitude-related perfusion parameters in the parotid glands by non-fat-saturated dynamic contrast-enhanced magnetic resonance imaging. Med Phys 2016; 43:1873. [PMID: 27036583 DOI: 10.1118/1.4943798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PURPOSE To verify whether quantification of parotid perfusion is affected by fat signals on non-fat-saturated (NFS) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and whether the influence of fat is reduced with fat saturation (FS). METHODS This study consisted of three parts. First, a retrospective study analyzed DCE-MRI data previously acquired on different patients using NFS (n = 18) or FS (n = 18) scans. Second, a phantom study simulated the signal enhancements in the presence of gadolinium contrast agent at six concentrations and three fat contents. Finally, a prospective study recruited nine healthy volunteers to investigate the influence of fat suppression on perfusion quantification on the same subjects. Parotid perfusion parameters were derived from NFS and FS DCE-MRI data using both pharmacokinetic model analysis and semiquantitative parametric analysis. T tests and linear regression analysis were used for statistical analysis with correction for multiple comparisons. RESULTS NFS scans showed lower amplitude-related parameters, including parameter A, peak enhancement (PE), and slope than FS scans in the patients (all with P < 0.0167). The relative signal enhancement in the phantoms was proportional to the dose of contrast agent and was lower in NFS scans than in FS scans. The volunteer study showed lower parameter A (6.75 ± 2.38 a.u.), PE (42.12% ± 14.87%), and slope (1.43% ± 0.54% s(-1)) in NFS scans as compared to 17.63 ± 8.56 a.u., 104.22% ± 25.15%, and 9.68% ± 1.67% s(-1), respectively, in FS scans (all with P < 0.005). These amplitude-related parameters were negatively associated with the fat content in NFS scans only (all with P < 0.05). CONCLUSIONS On NFS DCE-MRI, quantification of parotid perfusion is adversely affected by the presence of fat signals for all amplitude-related parameters. The influence could be reduced on FS scans.
Collapse
Affiliation(s)
- Su-Chin Chiu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China and Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan, Republic of China
| | - Cheng-Chieh Cheng
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hing-Chiu Chang
- Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong
| | - Hsiao-Wen Chung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan, Republic of China; Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan, Republic of China; and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Hui-Chu Chiu
- Ph.D. Program of Technology Management, Chung Hua University, Hsinchu 300, Taiwan, Republic of China
| | - Yi-Jui Liu
- Department of Automatic Control Engineering, Feng-Chia University, Taichung 407, Taiwan, Republic of China
| | - Hsian-He Hsu
- Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| | - Chun-Jung Juan
- Department of Radiology, Tri-Service General Hospital, Taipei 114, Taiwan and Department of Radiology, National Defense Medical Center, Taipei 114, Taiwan, Republic of China
| |
Collapse
|
7
|
Temporal Evolution of Parotid Volume and Parotid Apparent Diffusion Coefficient in Nasopharyngeal Carcinoma Patients Treated by Intensity-Modulated Radiotherapy Investigated by Magnetic Resonance Imaging: A Pilot Study. PLoS One 2015; 10:e0137073. [PMID: 26323091 PMCID: PMC4556378 DOI: 10.1371/journal.pone.0137073] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/12/2015] [Indexed: 12/18/2022] Open
Abstract
Purpose To concurrently quantify the radiation-induced changes and temporal evolutions of parotid volume and parotid apparent diffusion coefficient (ADC) in nasopharyngeal carcinoma (NPC) patients treated by intensity-modulated radiotherapy by using magnetic resonance imaging (MRI). Materials and Methods A total of 11 NPC patients (9 men and 2 women; 48.7 ± 11.7 years, 22 parotid glands) were enrolled. Radiation dose, parotid sparing volume, severity of xerostomia, and radiation-to-MR interval (RMI) was recorded. MRI studies were acquired four times, including one before and three after radiotherapy. The parotid volume and the parotid ADC were measured. Statistical analysis was performed using SPSS and MedCalc. Bonferroni correction was applied for multiple comparisons. A P value less than 0.05 was considered as statistically significant. Results The parotid volume was 26.2 ± 8.0 cm3 before radiotherapy. The parotid ADC was 0.8 ± 0.15 × 10−3 mm2/sec before radiotherapy. The parotid glands received a radiation dose of 28.7 ± 4.1 Gy and a PSV of 44.1 ± 12.6%. The parotid volume was significantly smaller at MR stage 1 and stage 2 as compared to pre-RT stage (P < .005). The volume reduction ratio was 31.2 ± 13.0%, 26.1 ± 13.5%, and 17.1 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was significantly higher at all post-RT stages as compared to pre-RT stage reciprocally (P < .005 at stage 1 and 2, P < .05 at stage 3). The ADC increase ratio was 35.7 ± 17.4%, 27.0 ± 12.8%, and 20.2 ± 16.6% at stage 1, 2, and 3, respectively. The parotid ADC was negatively correlated to the parotid volume (R = -0.509; P < .001). The parotid ADC was positively associated with the radiation dose significantly (R2 = 0.212; P = .0001) and was negatively associated with RMI significantly (R2 = 0.203; P = .00096) significantly. Multiple regression analysis further showed that the post-RT parotid ADC was related to the radiation dose and RMI significantly (R2 = 0.3580; P < .0001). At MR stage 3, the parotid volume was negatively associated with the dry mouth grade significantly (R2 = 0.473; P < .0001), while the parotid ADC was positively associated with the dry mouth grade significantly (R2 = 0.288; P = .015). Conclusion Our pilot study successfully demonstrates the concurrent changes and temporal evolution of parotid volume and parotid ADC quantitatively in NPC patients treated by IMRT. Our results suggest that the reduction of parotid volume and increase of parotid ADC are dominated by the effect of acinar loss rather than edema at early to intermediate phases and the following recovery of parotid volume and ADC toward the baseline values might reflect the acinar regeneration of parotid glands.
Collapse
|
8
|
Arteaga-Marrero N, Rygh CB, Mainou-Gomez JF, Nylund K, Roehrich D, Heggdal J, Matulaniec P, Gilja OH, Reed RK, Svensson L, Lutay N, Olsen DR. Multimodal approach to assess tumour vasculature and potential treatment effect with DCE-US and DCE-MRI quantification in CWR22 prostate tumour xenografts. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:428-37. [PMID: 26010530 DOI: 10.1002/cmmi.1645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 03/16/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
Abstract
The aim of this study was to compare intratumoural heterogeneity and longitudinal changes assessed by dynamic contrast-enhanced ultrasound (DCE-US) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in prostate tumour xenografts. In vivo DCE-US and DCE-MRI were obtained 24 h pre- (day 0) and post- (day 2) radiation treatment with a single dose of 7.5 Gy. Characterization of the tumour vasculature was determined by Brix pharmacokinetic analysis of the time-intensity curves. Histogram analysis of voxels showed significant changes (p < 0.001) from day 0 to day 2 in both modalities for kep , the exchange rate constant from the extracellular extravascular space to the plasma, and kel , the elimination rate constant of the contrast. In addition, kep and kel values from DCE-US were significantly higher than those derived from DCE-MRI at day 0 (p < 0.0001) for both groups. At day 2, kel followed the same tendency for both groups, whereas kep showed this tendency only for the treated group in intermediate-enhancement regions. Regarding kep median values, longitudinal changes were not found for any modality. However, at day 2, kep linked to DCE-US was correlated to MVD in high-enhancement areas for the treated group (p = 0.05). In contrast, correlation to necrosis was detected for the control group in intermediate-enhancement areas (p < 0.1). Intratumoural heterogeneity and longitudinal changes in tumour vasculature were assessed for both modalities. Microvascular parameters derived from DCE-US seem to provide reliable biomarkers during radiotherapy as validated by histology. Furthermore, DCE-US could be a stand-alone or a complementary technique.
Collapse
Affiliation(s)
- N Arteaga-Marrero
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - C B Rygh
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - J F Mainou-Gomez
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - K Nylund
- National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - D Roehrich
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - J Heggdal
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - P Matulaniec
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - O H Gilja
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,National Centre for Ultrasound in Gastroenterology, Haukeland University Hospital, Bergen, Norway
| | - R K Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Norway
| | - L Svensson
- Section of Immunology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - N Lutay
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - D R Olsen
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
9
|
Liu YJ, Lee YH, Chang HC, Huang TY, Chiu HC, Wang CW, Chiou TW, Hsu K, Juan CJ, Huang GS, Hsu HH. A potential risk of overestimating apparent diffusion coefficient in parotid glands. PLoS One 2015; 10:e0124118. [PMID: 25922948 PMCID: PMC4414616 DOI: 10.1371/journal.pone.0124118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 03/10/2015] [Indexed: 12/18/2022] Open
Abstract
Objectives To investigate transient signal loss on diffusion weighted images (DWI) and overestimation of apparent diffusion coefficient (ADC) in parotid glands using single shot echoplanar DWI (EPDWI). Materials and Methods This study enrolled 6 healthy subjects and 7 patients receiving radiotherapy. All participants received dynamic EPDWI with a total of 8 repetitions. Imaging quality of DWI was evaluated. Probability of severe overestimation of ADC (soADC), defined by an ADC ratio more than 1.2, was calculated. Error on T2WI, DWI, and ADC was computed. Statistical analysis included paired Student t testing and Mann-Whitney U test. A P value less than 0.05 was considered statistically significant. Results Transient signal loss was visually detected on some excitations of DWI but not on T2WI or mean DWI. soADC occurred randomly among 8 excitations and 3 directions of diffusion encoding gradients. Probability of soADC was significantly higher in radiotherapy group (42.86%) than in healthy group (24.39%). The mean error percentage decreased as the number of excitations increased on all images, and, it was smallest on T2WI, followed by DWI and ADC in an increasing order. Conclusions Transient signal loss on DWI was successfully detected by dynamic EPDWI. The signal loss on DWI and overestimation of ADC could be partially remedied by increasing the number of excitations.
Collapse
Affiliation(s)
- Yi-Jui Liu
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, Republic of China
| | - Yi-Hsiung Lee
- Ph.D. program in Electrical and Communication Engineering in Feng Chia University, Taichung, Taiwan, Republic of China
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Hing-Chiu Chang
- Brain Imaging and Analysis Center, Duke University Medical Center, Durham, North Carolina, United States of America
- Applied Science Laboratory, GE Healthcare, Taipei, Taiwan
| | - Teng-Yi Huang
- Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, Republic of China
| | - Hui-Chu Chiu
- Ph.D. program of Technology Management, Chung Hua University, Hsinchu, Taiwan, Republic of China
| | - Chih-Wei Wang
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Ta-Wei Chiou
- Department of Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Kang Hsu
- Department of Dentistry, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chun-Jung Juan
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
- * E-mail:
| | - Guo-Shu Huang
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| | - Hsian-He Hsu
- Department of Radiology, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Department of Radiology, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
| |
Collapse
|