1
|
Yang R, Chen Z, Pan J, Yang S, Hu F. Non-contrast T1ρ dispersion versus Gd-EOB-DTPA-enhanced T1mapping for the risk stratification of non-alcoholic fatty liver disease in rabbit models. Magn Reson Imaging 2024; 107:130-137. [PMID: 38278311 DOI: 10.1016/j.mri.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE To investigate the diagnostic efficacy of T1ρ dispersion and Gd-EOB-DTPAenhanced T1mapping in the identification of early liver fibrosis (LF) and non-alcoholic steatohepatitis (NASH) in a non-alcoholic fatty liver disease (NAFLD) rabbit model induced by a high-fat diet using histopathological findings as the standard reference. METHODS A total of sixty rabbits were randomly allocated into the standard control group (n = 12) and the NAFLD model groups (8 rabbits per group) corresponding to different high-fat high cholesterol diet feeding weeks. All rabbits underwent noncontrast transverse T1ρ mapping with varying spin-locking frequencies (FSL = 0 Hz and 500 Hz), native T1 mapping, and Gd-EOB-DTPA-enhanced T1 mapping during the hepatobiliary phase. The histopathological findings were assessed based on the NASH CRN Scoring System. Statistical analyses were conducted using the intraclass correlation coefficient, analysis of variance, multiple linear regression, and receiver operating characteristics. RESULTS Except for native T1, T1ρ, T1ρ dispersion, HBP T1, and △T1 values significantly differed among different liver fibrosis groups (F = 14.414, 18.736, 10.15, and 9.799, respectively; all P < 0.05). T1ρ, T1ρ dispersion, HBP T1, and △T1 values also exhibited significant differences among different NASH groups (F = 4.138, 4.594, 21.868, and 22.678, respectively; all P < 0.05). In the multiple regression analysis, liver fibrosis was the only factor that independently influenced T1ρ dispersion (R2 = 0.746, P = 0.000). Among all metrics, T1ρ dispersion demonstrated the best area under curve (AUC) for identifying early LF (≥ F1 stage) and significant LF (≥ F2 stage) (AUC, 0.849 and 0.916, respectively). The performance of △T1 and HBP T1 (AUC, 0.948 and 0.936, respectively) were better than that of T1ρ and T1ρ dispersion (AUC, 0.762 and 0.769, respectively) for diagnosing NASH. CONCLUSION T1⍴ dispersion may be suitable for detecting liver fibrosis in the complex background of NAFLD, while Gd-EOB-DTPA enhanced T1 mapping is superior to nonenhanced T1⍴ mapping (T1⍴ and T1⍴ dispersion) for identifying NASH.
Collapse
Affiliation(s)
- Ru Yang
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Zhongshan Chen
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Jin Pan
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China
| | - Shimin Yang
- Shanghai United Imaging Healthcare Co., Ltd., No.2258, Chengbei Road, Shanghai, China
| | - Fubi Hu
- Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, No.278, Baoguang Road, Xindu District, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Xie S, Qi H, Li Q, Zhang K, Zhang L, Cheng Y, Shen W. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication. BMC Gastroenterol 2020; 20:14. [PMID: 31941457 PMCID: PMC6964054 DOI: 10.1186/s12876-020-1161-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Background To investigate the merit of T1rho relaxation for the evaluation of liver fibrosis, inflammatory activity, and liver injury monitoring in a carbon tetrachloride (CCl4)-induced rat model. Methods Model rats from CCl4-induced liver fibrosis (fibrosis group: n = 41; regression group: n = 20) and control (n = 11) groups underwent black blood T1rho magnetic resonance (MR) imaging (MRI). Injection of CCl4 was done twice weekly for up to 12 weeks in the fibrosis group and for up to 6 weeks in the regression group. MR scanning time points were at baseline and at 2, 4, 6, 8, 10 and 12 weeks after CCl4 injection in the fibrosis group and at baseline and at 2, 4, 6 (CCl4 withdrawal), 7, 8, 10 and 12 weeks in the regression group. Results In the fibrosis group, liver T1rho values increased gradually within week 8 and then decreased. In the regression group, T1rho values dropped gradually after the withdrawal of CCl4 and fell below those at baseline. The T1rho values at S0 were lower than those at any other stage (all P < 0.05). The T1rho values at G0 were significantly lower than those at any other grade, and G1 was lower than G2 (all P < 0.01). The T1rho values mildly correlated with fibrosis stages (r = 0.362) and moderately correlated with grades of inflammation (r = 0.568). The T1rho values of rats with the same inflammation grades showed no significant difference among different fibrosis stages, and the T1rho values at S3 showed a significant difference among different grades of inflammation (P = 0.024). Inflammation grade was an independent variable associated with T1rho values (P < 0.001). Conclusion T1rho MRI can be used to monitor CCl4-induced liver injury, and inflammatory activity had a greater impact on liver T1rho values than fibrosis.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Radiology, First Central Hospital Clinical Institute, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin, 300070, China
| | - Hanxiong Qi
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Qing Li
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Kun Zhang
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Longjiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Nanjing, 210002, Jiangsu, China
| | - Yue Cheng
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin medical imaging institute, 24 Fukang Road, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
3
|
Combined morphological and functional liver MRI using spin-lattice relaxation in the rotating frame (T1ρ) in conjunction with Gadoxetic Acid-enhanced MRI. Sci Rep 2019; 9:2083. [PMID: 30765741 PMCID: PMC6375916 DOI: 10.1038/s41598-018-37689-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
Noninvasive early detection of liver cirrhosis and fibrosis is essential for management and therapy. The aim was to investigated whether a combination of the functional parameter relative enhancement (RE) on Gadoxetic Acid magnetic resonance imaging (Gd-EOB-DTPA-enhanced MRI) and the fibrosis parameter T1ρ distinguishes cirrhosis and healthy liver. We analyzed patients with Gd-EOB-DTPA-enhanced MRI and T1ρ mapping. Signal intensity was measured before and after contrast; RE was calculated. T1ρ was measured with circular regions of interest (T1ρ-cROI). A quotient of RE and T1ρ-cROI was calculated: the fibrosis function quotient (FFQ). Cirrhosis was evaluated based on morphology and secondary changes. 213 datasets were included. The difference between cirrhotic and noncirrhotic liver was 51.11 ms vs. 47.56 ms for T1ρ-cROI (p < 0.001), 0.59 vs. 0.70 for RE (p < 0.001), and 89.53 vs. 70.83 for FFQ (p < 0.001). T1ρ-cROI correlated with RE, r = −0.14 (p < 0.05). RE had an AUC of 0.73. The largest AUC had the FFQ with 0.79. The best cutoff value was 48.34 ms for T1ρ-cROI, 0.70 for RE and 78.59 ms for FFQ. In conclusion T1ρ and RE can distinguish between cirrhotic and noncirrhotic liver. The FFQ, which is the combination of the two, improves diagnostic performance.
Collapse
|
4
|
Abstract
Liver fibrosis is a hallmark of chronic liver disease characterized by the excessive accumulation of extracellular matrix proteins. Although liver biopsy is the reference standard for diagnosis and staging of liver fibrosis, it has some limitations, including potential pain, sampling variability, and low patient acceptance. Hence, there has been an effort to develop noninvasive imaging techniques for diagnosis, staging, and monitoring of liver fibrosis. Many quantitative techniques have been implemented on magnetic resonance imaging (MRI) for this indication. The most widely validated technique is magnetic resonance elastography, which aims to measure viscoelastic properties of the liver and relate them to fibrosis stage. Several additional MRI methods have been developed or adapted to liver fibrosis quantification. Diffusion-weighted imaging measures the Brownian motion of water molecules which is restricted by collagen fibers. Texture analysis assesses the changes in the texture of liver parenchyma associated with fibrosis. Perfusion imaging relies on signal intensity and pharmacokinetic models to extract quantitative perfusion parameters. Hepatocellular function, which decreases with increasing fibrosis stage, can be estimated by the uptake of hepatobiliary contrast agents. Strain imaging measures liver deformation in response to physiological motion such as cardiac contraction. T1ρ quantification is an investigational technique, which measures the spin-lattice relaxation time in the rotating frame. This article will review the MRI techniques used in liver fibrosis staging, their advantages and limitations, and diagnostic performance. We will briefly discuss future directions, such as longitudinal monitoring of disease, prediction of portal hypertension, and risk stratification of hepatocellular carcinoma.
Collapse
|
5
|
Xie S, Li Q, Cheng Y, Zhang Y, Zhuo Z, Zhao G, Shen W. Impact of Liver Fibrosis and Fatty Liver on T1rho Measurements: A Prospective Study. Korean J Radiol 2017; 18:898-905. [PMID: 29089822 PMCID: PMC5639155 DOI: 10.3348/kjr.2017.18.6.898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/15/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE To investigate the liver T1rho values for detecting fibrosis, and the potential impact of fatty liver on T1rho measurements. MATERIALS AND METHODS This study included 18 healthy subjects, 18 patients with fatty liver, and 18 patients with liver fibrosis, who underwent T1rho MRI and mDIXON collections. Liver T1rho, proton density fat fraction (PDFF) and T2* values were measured and compared among the three groups. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the T1rho values for detecting liver fibrosis. Liver T1rho values were correlated with PDFF, T2* values and clinical data. RESULTS Liver T1rho and PDFF values were significantly different (p < 0.001), whereas the T2* (p = 0.766) values were similar, among the three groups. Mean liver T1rho values in the fibrotic group (52.6 ± 6.8 ms) were significantly higher than those of healthy subjects (44.9 ± 2.8 ms, p < 0.001) and fatty liver group (45.0 ± 3.5 ms, p < 0.001). Mean liver T1rho values were similar between healthy subjects and fatty liver group (p = 0.999). PDFF values in the fatty liver group (16.07 ± 10.59%) were significantly higher than those of healthy subjects (1.43 ± 1.36%, p < 0.001) and fibrosis group (1.07 ± 1.06%, p < 0.001). PDFF values were similar in healthy subjects and fibrosis group (p = 0.984). Mean T1rho values performed well to detect fibrosis at a threshold of 49.5 ms (area under the ROC curve, 0.855), had a moderate correlation with liver stiffness (r = 0.671, p = 0.012), and no correlation with PDFF, T2* values, subject age, or body mass index (p > 0.05). CONCLUSION T1rho MRI is useful for noninvasive detection of liver fibrosis, and may not be affected with the presence of fatty liver.
Collapse
Affiliation(s)
- Shuangshuang Xie
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Qing Li
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yue Cheng
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| | - Yu Zhang
- Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Zhizheng Zhuo
- Clinical Science, Philips Healthcare, Beijing 100600, China
| | - Guiming Zhao
- Department of Hepatology, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin 300192, China
| |
Collapse
|
6
|
Petitclerc L, Sebastiani G, Gilbert G, Cloutier G, Tang A. Liver fibrosis: Review of current imaging and MRI quantification techniques. J Magn Reson Imaging 2016; 45:1276-1295. [PMID: 27981751 DOI: 10.1002/jmri.25550] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/27/2016] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is characterized by the accumulation of extracellular matrix proteins such as collagen in the liver interstitial space. All causes of chronic liver disease may lead to fibrosis and cirrhosis. The severity of liver fibrosis influences the decision to treat or the need to monitor hepatic or extrahepatic complications. The traditional reference standard for diagnosis of liver fibrosis is liver biopsy. However, this technique is invasive, associated with a risk of sampling error, and has low patient acceptance. Imaging techniques offer the potential for noninvasive diagnosis, staging, and monitoring of liver fibrosis. Recently, several of these have been implemented on ultrasound (US), computed tomography, or magnetic resonance imaging (MRI). Techniques that assess changes in liver morphology, texture, or perfusion that accompany liver fibrosis have been implemented on all three imaging modalities. Elastography, which measures changes in mechanical properties associated with liver fibrosis-such as strain, stiffness, or viscoelasticity-is available on US and MRI. Some techniques assessing liver shear stiffness have been adopted clinically, whereas others assessing strain or viscoelasticity remain investigational. Further, some techniques are only available on MRI-such as spin-lattice relaxation time in the rotating frame (T1 ρ), diffusion of water molecules, and hepatocellular function based on the uptake of a liver-specific contrast agent-remain investigational in the setting of liver fibrosis staging. In this review, we summarize the key concepts, advantages and limitations, and diagnostic performance of each technique. The use of multiparametric MRI techniques offers the potential for comprehensive assessment of chronic liver disease severity. LEVEL OF EVIDENCE 5 J. MAGN. RESON. IMAGING 2017;45:1276-1295.
Collapse
Affiliation(s)
- Léonie Petitclerc
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Giada Sebastiani
- Department of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Guillaume Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada
| | - Guy Cloutier
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Institute of Biomedical Engineering, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec, Canada.,Laboratory of Biorheology and Medical Ultrasonics, CRCHUM, 900 Saint-Denis, Montréal, Québec, Canada
| | - An Tang
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Institute of Biomedical Engineering, Université de Montréal, CP 6128, Succursale Centre-ville, Montréal, Québec, Canada
| |
Collapse
|