1
|
Noll JM, Sherafat AA, Ford GD, Ford BD. The case for neuregulin-1 as a clinical treatment for stroke. Front Cell Neurosci 2024; 18:1325630. [PMID: 38638304 PMCID: PMC11024452 DOI: 10.3389/fncel.2024.1325630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Ischemic stroke is the leading cause of serious long-term disability and the 5th leading cause of death in the United States. Revascularization of the occluded cerebral artery, either by thrombolysis or endovascular thrombectomy, is the only effective, clinically-approved stroke therapy. Several potentially neuroprotective agents, including glutamate antagonists, anti-inflammatory compounds and free radical scavenging agents were shown to be effective neuroprotectants in preclinical animal models of brain ischemia. However, these compounds did not demonstrate efficacy in clinical trials with human patients following stroke. Proposed reasons for the translational failure include an insufficient understanding on the cellular and molecular pathophysiology of ischemic stroke, lack of alignment between preclinical and clinical studies and inappropriate design of clinical trials based on the preclinical findings. Therefore, novel neuroprotective treatments must be developed based on a clearer understanding of the complex spatiotemporal mechanisms of ischemic stroke and with proper clinical trial design based on the preclinical findings from specific animal models of stroke. We and others have demonstrated the clinical potential for neuregulin-1 (NRG-1) in preclinical stroke studies. NRG-1 significantly reduced ischemia-induced neuronal death, neuroinflammation and oxidative stress in rodent stroke models with a therapeutic window of >13 h. Clinically, NRG-1 was shown to be safe in human patients and improved cardiac function in multisite phase II studies for heart failure. This review summarizes previous stroke clinical candidates and provides evidence that NRG-1 represents a novel, safe, neuroprotective strategy that has potential therapeutic value in treating individuals after acute ischemic stroke.
Collapse
Affiliation(s)
- Jessica M. Noll
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
- Nanostring Technologies, Seattle, WA, United States
| | - Arya A. Sherafat
- Division of Biomedical Sciences, University of California-Riverside School of Medicine, Riverside, CA, United States
| | - Gregory D. Ford
- Southern University-New Orleans, New Orleans, LA, United States
| | - Byron D. Ford
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| |
Collapse
|
2
|
Pei X, Zhang L, Liu D, Wu Y, Li X, Cao Y, Du X. Notoginsenoside R1 attenuates brain injury in rats with traumatic brain injury: Possible mediation of apoptosis via ERK1/2 signaling pathway. PLoS One 2023; 18:e0295903. [PMID: 38109303 PMCID: PMC10727368 DOI: 10.1371/journal.pone.0295903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023] Open
Abstract
Traumatic brain injury (TBI) occurs worldwide and is associated with high mortality and disability rate. Apoptosis induced by TBI is one of the important causes of secondary injury after TBI. Notoginsenoside R1 (NGR1) is the main phytoestrogen extracted from Panax notoginseng. Many studies have shown that NGR1 has potent neuroprotective, anti-inflammatory, and anti-apoptotic properties and is effective in ischemia-reperfusion injury. Therefore, we investigated the potential neuroprotective effects of NGR1 after TBI and explored its molecular mechanism of action. A rat model of TBI was established using the controlled cortical impact (CCI) method. The expression levels of Bcl-2, Bax, caspase 3, and ERK1/2-related molecules in the downstream pathway were also detected by western blotting. The expression levels of pro-inflammatory cytokines were detected by real-time quantitative PCR. Nissl staining was used to clarify the morphological changes around the injury foci in rats after TBI. Fluoro-Jade B (FJB) and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) fluorescence staining were used to detect the apoptosis of neural cells in each group of rats. The results showed that NGR1 administration reduced neurological deficits after TBI, as well as brain edema and brain tissue apoptosis. It also significantly inhibited the expression of pro-inflammatory cytokines. Furthermore, NGR1 decreased the expression levels of extracellular signal-regulated kinase (ERK) and p-RSK1, which are phosphorylated after trauma. This study suggests that NGR1 can improve neuronal apoptosis in brain injury by inhibiting the ERK signaling pathway. NGR1 is a potential novel neuroprotective agent for the treatment of secondary brain injury after TBI.
Collapse
Affiliation(s)
- Xiaoxian Pei
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Ling Zhang
- Translational Medicine Center, The First People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Dan Liu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Yajuan Wu
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiaowei Li
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Ying Cao
- Department of Psychiatric, The Fourth People’s Hospital of Zhangjiagang City, Suzhou, China
| | - Xiangdong Du
- Department of Psychiatric, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Li CX, Meng Y, Yan Y, Kempf D, Howell L, Tong F, Zhang X. Investigation of white matter and grey matter alteration in the monkey brain following ischemic stroke by using diffusion tensor imaging. INVESTIGATIVE MAGNETIC RESONANCE IMAGING 2022; 26:275-283. [PMID: 36698483 PMCID: PMC9873195 DOI: 10.13104/imri.2022.26.4.275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Investigation of stroke lesion has mostly focused on grey matter (GM) in previous studies and white matter (WM) degeneration during acute stroke is understudied. In the present study, monkeys were utilized to investigate the alterations of GM and WM in the brain following ischemic occlusion using diffusion tensor imaging (DTI). Methods Permanent middle cerebral artery occlusion (pMCAO) was induced in rhesus monkeys (n=6) with an interventional approach. Serial DTI was conducted on a clinical 3T in the hyperacute phase (2-6 hours), 48, and 96 hours post occlusion. Regions of interest in GM and WM of lesion areas were selected for data analysis. Results Mean diffusivity (MD), radial diffusivity (RD), and axial Diffusivity (AD) in WM decreased substantially during hyperacute stroke, as similar as those seen in GM. No obvious fractional anasotropy (FA) changes were seen in GM and WM during hyper acute phase. until 48 hours post stroke when significant fiber losses were oberved also. Pseudo-normalization of MD, AD, and RD was seen at 96 hours. Pathological changes of WM and GM were observed in ischemic areas at 8, 48, and 96 hours post stroke. Relative changes of MD, AD and RD of WM were correlated negatively with infarction volumes at 6 hours post stroke. Conclusion The present study revealed the microstructural changes in gray matter and white matter of monkey brains during acute stroke by using DTI. The preliminary results suggest axial and radial diffusivity (AD and RD) may be sensitive surrogate markers to assess specific microstructural changes in white matter during hyper-acute stroke.
Collapse
Affiliation(s)
- Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yuguang Meng
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Yumei Yan
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Doty Kempf
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Leonard Howell
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| | - Frank Tong
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, Georgia 30329
| |
Collapse
|
4
|
Cheng W, Cui C, Liu G, Ye C, Shao F, Bagchi AK, Mehta JL, Wang X. NF-κB, A Potential Therapeutic Target in Cardiovascular Diseases. Cardiovasc Drugs Ther 2022; 37:571-584. [PMID: 35796905 DOI: 10.1007/s10557-022-07362-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. Atherosclerosis is the basis of major CVDs - myocardial ischemia, heart failure, and stroke. Among numerous functional molecules, the transcription factor nuclear factor κB (NF-κB) has been linked to downstream target genes involved in atherosclerosis. The activation of the NF-κB family and its downstream target genes in response to environmental and cellular stress, hypoxia, and ischemia initiate different pathological events such as innate and adaptive immunity, and cell survival, differentiation, and proliferation. Thus, NF-κB is a potential therapeutic target in the treatment of atherosclerosis and related CVDs. Several biologics and small molecules as well as peptide/proteins have been shown to regulate NF-κB dependent signaling pathways. In this review, we will focus on the function of NF-κB in CVDs and the role of NF-κB inhibitors in the treatment of CVDs.
Collapse
Affiliation(s)
- Weijia Cheng
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Can Cui
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China.,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China
| | - Fang Shao
- Department of Cardiology, Fuwai Central China Cardiovascular Hospital, Zhengzhou, 450046, China
| | - Ashim K Bagchi
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA
| | - Jawahar L Mehta
- Division of Cardiology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR, 72205, USA.
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital, Xinxiang Medical University, Weihui, China. .,Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
5
|
Zhang X, Li CX, Yan Y, Nair G, Rilling JK, Herndon JG, Preuss TM, Hu X, Li L. In-vivo diffusion MRI protocol optimization for the chimpanzee brain and examination of aging effects on the primate optic nerve at 3T. Magn Reson Imaging 2020; 77:194-203. [PMID: 33359631 DOI: 10.1016/j.mri.2020.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Diffusion MRI (dMRI) data acquisition protocols are well-established on modern high-field clinical scanners for human studies. However, these protocols are not suitable for the chimpanzee (or other large-brained mammals) because of its substantial difference in head geometry and brain volume compared with humans. Therefore, an optimal dMRI data acquisition protocol dedicated to chimpanzee neuroimaging is needed. METHODS A multi-shot (4 segments) double spin-echo echo-planar imaging (MS-EPI) sequence and a single-shot double spin-echo EPI (SS-EPI) sequence were optimized separately for in vivo dMRI data acquisition of chimpanzees using a clinical 3T scanner. Correction for severe susceptibility-induced image distortion and signal drop-off of the chimpanzee brain was performed and evaluated using FSL software. DTI indices in different brain regions and probabilistic tractography were compared. A separate DTI data set from n=34 chimpanzees (13 to 56 years old) was collected using the optimal protocol. Age-related changes in diffusivity indices of optic nerve fibers were evaluated. RESULTS The SS-EPI sequence acquired dMRI data of the chimpanzee brain with approximately doubled the SNR as the MS-EPI sequence given the same scan time. The quality of white matter fiber tracking from the SS-EPI data was much higher than that from MS-EPI data. However, quantitative analysis of DTI indices showed no difference in most ROIs between the SS-EPI and MS-EPI sequences. The progressive evolution of diffusivity indices of optic nerves indicated mild changes in fiber bundles of chimpanzees aged 40 years and above. CONCLUSION The single-shot EPI-based acquisition protocol provided better image quality of dMRI for chimpanzee brains and is recommended for in vivo dMRI study or clinical diagnosis of chimpanzees (or other large animals) using a clinical scanner. Also, the tendency of FA decrease or diffusivity increase in the optic nerve of aged chimpanzees was seen but did not show significant age-related changes, suggesting aging may have less impact on optic nerve fiber integrity of chimpanzees, in contrast to previous results for both macaque monkeys and humans.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America.
| | - Chun-Xia Li
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Yumei Yan
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Govind Nair
- qMRI Core Facility, NINDS, NIH, Bethesda, MD 20892, United States of America
| | - James K Rilling
- Department of Anthropology, Emory University, Atlanta, GA, United States of America; Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - James G Herndon
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States of America
| | - Xiaoping Hu
- Dept of Bioengineering, University of California, Riverside, CA, United States of America
| | - Longchuan Li
- Marcus Autism Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States of America.
| |
Collapse
|
6
|
Abstract
Ischemic strokes occur when a major cerebral artery or its branches are occluded, resulting in activation of inflammatory processes that cause secondary tissue injury, breakdown of the blood–brain barrier, edema or hemorrhage. Treatments that inhibit inflammatory processes may thus be highly beneficial. A key regulator of the inflammatory process is the nuclear factor kappa B (NF-κB) pathway. In its active form, NF-κB regulates expression of proinflammatory and proapoptotic genes. The molecules that interact with NF-κB, and the subunits that compose NF-κB itself, represent therapeutic targets that can be modulated to decrease inflammation. This review focuses on our current understanding of the NF-κB pathway and the potential benefits of inhibiting NF-κB in ischemia-reperfusion injury of the brain.
Collapse
|
7
|
Noll JM, Li Y, Distel TJ, Ford GD, Ford BD. Neuroprotection by Exogenous and Endogenous Neuregulin-1 in Mouse Models of Focal Ischemic Stroke. J Mol Neurosci 2019; 69:333-342. [PMID: 31290093 DOI: 10.1007/s12031-019-01362-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022]
Abstract
Identifying novel neuroprotectants that can halt or reverse the neurological effects of stroke is of interest to both clinicians and scientists. We and others previously showed the pre-clinical neuroprotective efficacy of neuregulin-1 (NRG-1) in rats following focal brain ischemia. In this study, we examined neuroprotection by exogenous and endogenous NRG-1 using a mouse model of ischemic stroke. C57BL6 mice were subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. NRG-1 or vehicle was infused intra-arterially (i.a.) or intravenously (i.v.) after MCAO and before the onset of reperfusion. NRG-1 treatment (16 μg/kg; i.a.) reduced cerebral cortical infarct volume by 72% in mice when delivered post-ischemia. NRG-1 also inhibited neuronal injury as measured by Fluoro Jade B labeling and rescued NeuN immunoreactivity in neurons. Neuroprotection by NRG-1 was also observed in mice when administered i.v. (100 μg/kg) in both male and female mice. We investigated whether endogenous NRG-1 was neuroprotective using male and female heterozygous NRG-1 knockout mice (NRG-1+/-) compared with wild-type mice (WT) littermates. NRG-1+/- and WT mice were subjected to MCAO for 45 min, and infarct size was measured 24 h following MCAO. NRG-1+/- mice displayed a sixfold increase in cortical infarct size compared with WT mice. These results demonstrate that NRG-1 treatment mitigates neuronal damage following cerebral ischemia. We further showed that reduced endogenous NRG-1 results in exacerbated neuronal injury in vivo. These findings suggest that NRG-1 represents a promising therapy to treat stroke in human patients.
Collapse
Affiliation(s)
- Jessica M Noll
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA
| | - Yonggang Li
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.,ICF, Atlanta, GA, 30329, USA
| | - Timothy J Distel
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA
| | - Gregory D Ford
- Fort Valley State University, 1005 State University Dr., Fort Valley, GA, 31030, USA
| | - Byron D Ford
- Division of Biomedical Sciences, University of California - Riverside School of Medicine, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|