1
|
Huang H, Yan Y, Jiang D, Zhao X, Cao D, She D. Is 3T MR nerve-bone fusion imaging a viable alternative to MRI-CBCT to identify the relationship between the inferior alveolar nerve and mandibular third molar. Clin Oral Investig 2024; 28:256. [PMID: 38630324 DOI: 10.1007/s00784-024-05649-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES To investigate the feasibility of MRI nerve-bone fusion imaging in assessing the relationship between inferior alveolar nerve (IAN) / mandibular canal (MC) and mandibular third molar (MTM) compared with MRI-CBCT fusion. MATERIALS AND METHODS The MRI nerve-bone fusion and MRI-CBCT fusion imaging were performed in 20 subjects with 37 MTMs. The Hausdorff distance (HD) value and dice similarity coefficient (DSC) was calculated. The relationship between IAN/MC and MTM roots, inflammatory, and fusion patterns were compared between these two fused images. The reliability was assessed using a weighted κ statistic. RESULTS The mean HD and DSC ranged from 0.62 ~ 1.35 and 0.83 ~ 0.88 for MRI nerve-bone fusion, 0.98 ~ 1.50 and 0.76 ~ 0.83 for MRI-CBCT fusion. MR nerve-bone fusion had considerable reproducibility compared to MRI-CBCT fusion in relation classification (MR nerve-bone fusion κ = 0.694, MRI-CBCT fusion κ = 0.644), direct contact (MR nerve-bone fusion κ = 0.729, MRI-CBCT fusion κ = 0.720), and moderate to good agreement for inflammation detection (MR nerve-bone fusion κ = 0.603, MRI-CBCT fusion κ = 0.532, average). The MR nerve-bone fusion imaging showed a lower ratio of larger pattern compared to MR-CBCT fusion (16.2% VS 27.3% in the molar region, and 2.7% VS 5.4% in the retromolar region). And the average time spent on MR nerve-bone fusion and MRI-CBCT fusion was 1 min and 3 min, respectively. CONCLUSIONS Both MR nerve-bone fusion and MRI-CBCT fusion exhibited good consistency in evaluating the spatial relationship between IAN/MC and MTM, fusion effect, and inflammation detection. CLINICAL RELEVANCE MR nerve-bone fusion imaging can be a preoperative one-stop radiation-free examination for patients at high risk for MTM surgery.
Collapse
Affiliation(s)
- Hao Huang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China
| | - Yalan Yan
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China
| | - Dongmei Jiang
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China
| | - Xiance Zhao
- Philips Healthcare, Shanghai, 200000, People's Republic of China
| | - Dairong Cao
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China.
| | - Dejun She
- Department of Radiology, First Affiliated Hospital of Fujian Medical University, 20 Cha-Zhong Road, Fuzhou, Fujian, 350005, People's Republic of China.
- Department of Radiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People's Republic of China.
- Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, 350005, People's Republic of China.
| |
Collapse
|
2
|
Al-Haj Husain A, Stadlinger B, Winklhofer S, Piccirelli M, Valdec S. Magnetic resonance imaging for preoperative diagnosis in third molar surgery: a systematic review. Oral Radiol 2023; 39:1-17. [PMID: 35397042 DOI: 10.1007/s11282-022-00611-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
Abstract
In recent years, magnetic resonance imaging (MRI) has made great strides through various technical improvements and new sequences, which have made it one of the most promising and leading imaging techniques in the head and neck region. As modern imaging techniques in dentistry aim to reduce radiation exposure, this systematic review evaluated the possibilities, advantages, and disadvantages of advanced imaging diagnostics using dental MRI and its evidence for clinical indications and limitations relevant to mandibular third molar (MTM) surgery. Two reviewers performed multiple database searches (PubMed MEDLINE, EMBASE, Biosis, and Cochrane databases) following the PICOS search strategy using medical subject headings (MeSH) terms, keywords, and their combinations. Ten studies were included in this systematic review. By providing high spatial resolution and excellent soft tissue contrast, black bone MRI sequences such as 3D Double Echo Steady State (DESS) and 3D Short Tau Inversion Recovery (STIR) imaging protocols have the potential to become a valuable alternative to cone-beam computed tomography (CBCT) in future dental clinical routines. Overall, radiation-free MRI represents another step toward personalized dentistry and improved decision-making that avoids ineffectiveness and minimizes risks in oral surgery by taking into account additional patient-side factors such as comorbidity, anatomical norm variations, and imaging biomarkers.
Collapse
Affiliation(s)
- Adib Al-Haj Husain
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| | - Sebastian Winklhofer
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvio Valdec
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland.
- Division of Periodontology, Department of Stomatology, Dental School, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Wiesinger F, Ho ML. Zero-TE MRI: principles and applications in the head and neck. Br J Radiol 2022; 95:20220059. [PMID: 35616709 PMCID: PMC10162052 DOI: 10.1259/bjr.20220059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/21/2022] [Accepted: 05/12/2022] [Indexed: 12/17/2022] Open
Abstract
Zero echo-time (ZTE) MRI is a novel imaging technique that utilizes ultrafast readouts to capture signal from short-T2 tissues. Additional sequence advantages include rapid imaging times, silent scanning, and artifact resistance. A robust application of this technology is imaging of cortical bone without the use of ionizing radiation, thus representing a viable alternative to CT for both rapid screening and "one-stop-shop" MRI. Although ZTE is increasingly used in musculoskeletal and body imaging, neuroimaging applications have historically been limited by complex anatomy and pathology. In this article, we review the imaging physics of ZTE including pulse sequence options, practical limitations, and image reconstruction. We then discuss optimization of settings for ZTE bone neuroimaging including acquisition, processing, segmentation, synthetic CT generation, and artifacts. Finally, we examine clinical utility of ZTE in the head and neck with imaging examples including malformations, trauma, tumors, and interventional procedures.
Collapse
Affiliation(s)
| | - Mai-Lan Ho
- Nationwide Children’s Hospital and The Ohio State University, Columbus, USA
| |
Collapse
|
4
|
Kobayashi N, Bambach S, Ho ML. Ultrashort Echo-Time MR Imaging of the Pediatric Head and Neck. Magn Reson Imaging Clin N Am 2021; 29:583-593. [PMID: 34717846 DOI: 10.1016/j.mric.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bone MR imaging techniques use extremely rapid echo times to maximize detection of short-T2 tissues with low water concentrations. The major approaches used in clinical practice are ultrashort echo-time and zero echo-time. Synthetic CT generation is feasible using atlas-based, voxel-based, and deep learning approaches. Major clinical applications in the pediatric head and neck include evaluation for craniosynostosis, sinonasal and jaw imaging, trauma, interventional planning, and postoperative follow-up. In this article, we review the technical background and practical usefulness of bone MR imaging with key imaging examples.
Collapse
Affiliation(s)
- Naoharu Kobayashi
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 6th Street SE, Minneapolis, MN 55455, USA
| | - Sven Bambach
- Abigail Wexner Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, Columbus, OH 43215, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Dr - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
5
|
Smith M, Bambach S, Selvaraj B, Ho ML. Zero-TE MRI: Potential Applications in the Oral Cavity and Oropharynx. Top Magn Reson Imaging 2021; 30:105-115. [PMID: 33828062 DOI: 10.1097/rmr.0000000000000279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
ABSTRACT Zero-echo time (ZTE) magnetic resonance imaging (MRI) is the newest in a family of MRI pulse sequences that involve ultrafast sequence readouts, permitting visualization of short-T2 tissues such as cortical bone. Inherent sequence properties enable rapid, high-resolution, quiet, and artifact-resistant imaging. ZTE can be performed as part of a "one-stop-shop" MRI examination for comprehensive evaluation of head and neck pathology. As a potential alternative to computed tomography for bone imaging, this approach could help reduce patient exposure to ionizing radiation and improve radiology resource utilization. Because ZTE is not yet widely used clinically, it is important to understand the technical limitations and pitfalls for diagnosis. Imaging cases are presented to demonstrate potential applications of ZTE for imaging of oral cavity, oropharynx, and jaw anatomy and pathology in adult and pediatric patients. Emerging studies indicate promise for future clinical implementation based on synthetic computed tomography image generation, 3D printing, and interventional applications.
Collapse
Affiliation(s)
- Mark Smith
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| | - Sven Bambach
- Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bhavani Selvaraj
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH
| |
Collapse
|
6
|
Is MRI a viable alternative to CT/CBCT to identify the course of the inferior alveolar nerve in relation to the roots of the third molars? Clin Oral Investig 2020; 25:3861-3871. [PMID: 33289048 PMCID: PMC8137481 DOI: 10.1007/s00784-020-03716-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Objectives To assess the reliability of judging the spatial relation between the inferior alveolar nerve (IAN) and mandibular third molar (MTM) based on MRI or CT/CBCT images. Methods Altogether, CT/CBCT and MRI images of 87 MTMs were examined twice by 3 examiners with different degrees of experience. The course of the IAN in relation to the MTM, the presence/absence of a direct contact between IAN and MTM, and the presence of accessory IAN were determined. Results The IAN was in > 40% of the cases judged as inferior, while an interradicular position was diagnosed in < 5% of the cases. The overall agreement was good (κ = 0.72) and any disagreement between the imaging modalities was primarily among the adjacent regions, i.e., buccal/lingual/interradicular vs. inferior. CT/CBCT judgements presented a very good agreement for the inter- and intrarater comparison (κ > 0.80), while MRI judgements showed a slightly lower, but good agreement (κ = 0.74). A direct contact between IAN and MTM was diagnosed in about 65%, but in almost 20% a disagreement between the judgements based on MRI and CT/CBCT was present resulting in a moderate overall agreement (κ = 0.60). The agreement between the judgements based on MRI and CT/CBCT appeared independent of the examiner’s experience and accessory IAN were described in 10 cases in MRI compared to 3 cases in CT/CBCT images. Conclusions A good inter- and intrarater agreement has been observed for the assessment of the spatial relation between the IAN and MTM based on MRI images. Further, MRI images might provide advantages in the detection of accessory IAN compared to CT/CBCT. Clinical relevance MRI appears as viable alternative to CT/CBCT for preoperative assessment of the IAN in relation to the MTM. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-020-03716-4.
Collapse
|