1
|
Gast LV, Platt T, Nagel AM, Gerhalter T. Recent technical developments and clinical research applications of sodium ( 23Na) MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:1-51. [PMID: 38065665 DOI: 10.1016/j.pnmrs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 12/18/2023]
Abstract
Sodium is an essential ion that plays a central role in many physiological processes including the transmembrane electrochemical gradient and the maintenance of the body's homeostasis. Due to the crucial role of sodium in the human body, the sodium nucleus is a promising candidate for non-invasively assessing (patho-)physiological changes. Almost 10 years ago, Madelin et al. provided a comprehensive review of methods and applications of sodium (23Na) MRI (Madelin et al., 2014) [1]. More recent review articles have focused mainly on specific applications of 23Na MRI. For example, several articles covered 23Na MRI applications for diseases such as osteoarthritis (Zbyn et al., 2016, Zaric et al., 2020) [2,3], multiple sclerosis (Petracca et al., 2016, Huhn et al., 2019) [4,5] and brain tumors (Schepkin, 2016) [6], or for imaging certain organs such as the kidneys (Zollner et al., 2016) [7], the brain (Shah et al., 2016, Thulborn et al., 2018) [8,9], and the heart (Bottomley, 2016) [10]. Other articles have reviewed technical developments such as radiofrequency (RF) coils for 23Na MRI (Wiggins et al., 2016, Bangerter et al., 2016) [11,12], pulse sequences (Konstandin et al., 2014) [13], image reconstruction methods (Chen et al., 2021) [14], and interleaved/simultaneous imaging techniques (Lopez Kolkovsky et al., 2022) [15]. In addition, 23Na MRI topics have been covered in review articles with broader topics such as multinuclear MRI or ultra-high-field MRI (Niesporek et al., 2019, Hu et al., 2019, Ladd et al., 2018) [16-18]. During the past decade, various research groups have continued working on technical improvements to sodium MRI and have investigated its potential to serve as a diagnostic and prognostic tool. Clinical research applications of 23Na MRI have covered a broad spectrum of diseases, mainly focusing on the brain, cartilage, and skeletal muscle (see Fig. 1). In this article, we aim to provide a comprehensive summary of methodological and hardware developments, as well as a review of various clinical research applications of sodium (23Na) MRI in the last decade (i.e., published from the beginning of 2013 to the end of 2022).
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Tanja Platt
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Teresa Gerhalter
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
2
|
Wilferth T, Mennecke A, Huhn K, Uder M, Doerfler A, Schmidt M, Nagel AM. Influence of Residual Quadrupolar Interaction on Quantitative Sodium Brain Magnetic Resonance Imaging of Patients With Multiple Sclerosis. Invest Radiol 2023; 58:730-739. [PMID: 37185832 DOI: 10.1097/rli.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
OBJECTIVES The purpose of this work was to evaluate the influence of residual quadrupolar interaction on the determination of human brain apparent tissue sodium concentrations (aTSCs) using quantitative sodium magnetic resonance imaging ( 23 Na MRI) in healthy controls (HCs) and patients with multiple sclerosis (MS). Especially, it was investigated if the more detailed examination of residual quadrupolar interaction effects enables further analysis of the observed 23 Na MRI signal increase in MS patients. MATERIALS AND METHODS 23 Na MRI with a 7 T MR system was performed on 21 HC and 50 MS patients covering all MS subtypes (25 patients with relapsing-remitting MS, 14 patients with secondary progressive MS, and 11 patients with primary progressive MS) using 2 different 23 Na pulse sequences for quantification: a commonly used standard sequence (aTSC Std ) as well as a sequence with shorter excitation pulse length and lower flip angle for minimizing signal loss resulting from residual quadrupolar interactions (aTSC SP ). Apparent tissue sodium concentration was determined using the same postprocessing pipeline including correction of the receive profile of the radiofrequency coil, partial volume correction, and relaxation correction. Spin dynamic simulations of spin-3/2 nuclei were performed to aid in the understanding of the measurement results and to get deeper insight in the underlying mechanisms. RESULTS In normal-appearing white matter (NAWM) of HC and all MS subtypes, the aTSC SP values were approximately 20% higher than the aTSC Std values ( P < 0.001). In addition, the ratio aTSC SP /aTSC Std was significantly higher in NAWM than in normal-appearing gray matter (NAGM) for all subject cohorts ( P < 0.002). In NAWM, aTSC Std values were significantly higher in primary progressive MS compared with HC ( P = 0.01) as well as relapsing-remitting MS ( P = 0.03). However, in contrast, no significant differences between the subject cohorts were found for aTSC SP . Spin simulations assuming the occurrence of residual quadrupolar interaction in NAWM were in good accordance with the measurement results, in particular, the ratio aTSC SP /aTSC Std in NAWM and NAGM. CONCLUSIONS Our results showed that residual quadrupolar interactions in white matter regions of the human brain have an influence on aTSC quantification and therefore must be considered, especially in pathologies with expected microstructural changes such as loss of myelin in MS. Furthermore, the more detailed examination of residual quadrupolar interactions may lead to a better understanding of the pathologies themselves.
Collapse
Affiliation(s)
| | | | - Konstantin Huhn
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen
| | | | | | | | | |
Collapse
|
3
|
Wu C, Blunck Y, Johnston LA. The "Spin-3/2 Bloch Equation": System matrix formalism of excitation, relaxation, and off-resonance effects in biological tissue. Magn Reson Med 2022; 88:1370-1379. [PMID: 35608214 DOI: 10.1002/mrm.29276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE This work proposes "Spin-3/2 Bloch Equation" (SBE), a consolidated formalism for spin-3/2 dynamics in biological environments. The formalism encapsulates excitation, relaxation, and off-resonance with accessible matrix representation for a straightforward implementation with high computational efficiency. THEORY The SBE is derived using spherical tensor operators to encapsulate the spin-3/2 dynamics in biological systems in a single system matrix, a formalism akin to the well-known Bloch Equations (BE). METHODS Using the proposed SBE, simulations of three classical 23 Na pulse sequences were performed to demonstrate the versatility and applicability of the model, returning the evolution of the 23 Na spin system during these experiments: soft rectangular and adiabatic inversion recovery (IR) and triple-quantum filtering. IR simulations were compared with two existing spin-3/2 simulators and the adaptive BE as a first-order approximation. RESULTS The proposed SBE is straightforward to implement and facilitates accurate and fast simulations of the underlying higher order coherence in sodium experiments of biological tissues. SBE simulations and comparison spin-3/2 simulators outperform the BE simulations as expected, with the SBE offering superior computational efficiency achieved by the single system matrix formalism. CONCLUSION The proposed SBE enables comprehensive and accurate simulations for spin-3/2 systems in biological tissue. With a one-line call to an ordinary differential equation solver, it offers a computationally efficient and accessible method for use in 23 Na pulse sequence design.
Collapse
Affiliation(s)
- Chengchuan Wu
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Yasmin Blunck
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Leigh A Johnston
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia.,Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Stobbe R, Boyd A, Smyth P, Emery D, Valdés Cabrera D, Beaulieu C. Sodium Intensity Changes Differ Between Relaxation- and Density-Weighted MRI in Multiple Sclerosis. Front Neurol 2021; 12:693447. [PMID: 34335450 PMCID: PMC8323606 DOI: 10.3389/fneur.2021.693447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/15/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: The source of Tissue Sodium Concentration (TSC) increase in Multiple Sclerosis (MS) remains unclear, and could be attributed to altered intracellular sodium concentration or tissue microstructure. This paper investigates sodium in MS using three new MRI sequences. Methods: Three sodium scans were acquired at 4.7 T from 30 patients (11 relapsing-remitting, 10 secondary-progressive, 9 primary-progressive) and 9 healthy controls including: Density-Weighted (NaDW), with very short 30° excitation for more accurate TSC measurement; Projection Acquisition with Coherent MAgNetization (NaPACMAN), designed for enhanced relaxation-based contrast; and Soft Inversion Recovery FLuid Attenuation (NaSIRFLA), developed to reduce fluid space contribution. Signal was measured in both lesions (n = 397) and normal appearing white matter (NAWM) relative to controls in the splenium of corpus callosum and the anterior and posterior limbs of internal capsule. Correlations with clinical and cognitive evaluations were tested over all MS patients. Results: Sodium intensity in MS lesions was elevated over control WM by a greater amount for NaPACMAN (75%) than NaDW (35%), the latter representing TSC. In contrast, NaSIRFLA exhibited lower intensity, but only for region specific analysis in the SCC (-7%). Sodium intensity in average MS NAWM was not significantly different than control WM for either of the three scans. NaSIRFLA in the average NAWM and specifically the posterior limb of internal capsules positively correlated with the Paced Auditory Serial Addition Test (PASAT). Discussion: Lower NaSIRFLA signal in lesions and ~2× greater NaPACMAN signal elevation over control WM than NaDW can be explained with a demyelination model that also includes edema. A NAWM demyelination model that includes tissue atrophy suggests no signal change for NaSIRFLA, and only slightly greater NAWM signal than control WM for both NaDW and NaPACMAN, reflecting experimental results. Models were derived from previous total and myelin water fraction study in MS with T2-relaxometry, and for the first time include sodium within the myelin water space. Reduced auditory processing association with lower signal on NaSIRFLA cannot be explained by greater demyelination and its modeled impact on the three sodium MRI sequences. Alternative explanations include intra- or extracellular sodium concentration change. Relaxation-weighted sodium MRI in combination with sodium-density MRI may help elucidate microstructural and metabolic changes in MS.
Collapse
Affiliation(s)
- Robert Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Annie Boyd
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Penelope Smyth
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Derek Emery
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Diana Valdés Cabrera
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Mennecke AB, Nagel AM, Huhn K, Linker RA, Schmidt M, Rothhammer V, Wilferth T, Linz P, Wegmann J, Eisenhut F, Engelhorn T, Doerfler A. Longitudinal Sodium MRI of Multiple Sclerosis Lesions: Is there Added Value of Sodium Inversion Recovery MRI. J Magn Reson Imaging 2021; 55:140-151. [PMID: 34259373 DOI: 10.1002/jmri.27832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sodium enhancement has been demonstrated in multiple sclerosis (MS) lesions. PURPOSE To investigate sodium MRI with and without an inversion recovery pulse in acute MS lesions in an MS relapse and during recovery. STUDY TYPE Prospective. SUBJECTS Twenty-nine relapsing-remitting MS patients with an acute relapse were included. FIELD STRENGTH/SEQUENCE A 3D density-adapted radial sodium sequence at 3 T using a dual-tuned (23 Na/1 H) head coil. ASSESSMENT Full-brain images of the tissue sodium concentration (TSC1, n = 29) and a sodium inversion recovery sequence (SIR1, n = 20) at the beginning of the anti-inflammatory therapy and on medium-term follow-up visits (days 27-99, n = 12 [TSC], n = 5 [SIR]) were measured. Regions of interest (RoIs) with contrast enhancement (T1 CE+) and without change in T1-weighted imaging (FL + T1n) were normalized (nTSC and nSIR). To gain insight on the origin of the TSC enhancement at time point 1, it is investigated whether the nTSC enhancement of the lesions is accompanied by a change of the respective nSIR. Potential prognostic value of nSIR1 is examined referring to the nTSC progression. STATISTICAL TESTS: nTSC and nSIR were compared regarding the type of lesion and the time point using a one-way ANOVA. Pearson's correlation coefficient was calculated for nTSC over nSIR and for nTSC1-nTSC2 over nSIR1. A P-value <0.05 was considered statistically significant. RESULTS At the first measurement, all lesion types showed increased nTSC, while nSIR was decreased in the FL + T1 n and the T1 CE+ lesions in comparison to the normal-appearing white matter. For acute lesions, the difference between nTSC at baseline and nTSC at time point 2 showed a significant correlation with the baseline nSIR. DATA CONCLUSION At time point 1, nTSC is increased, while nSIR is unchanged or decreased in the lesions. The mean sodium IR signal at baseline correlates with recovery or progression of an acute lesion. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Angelika B Mennecke
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, University Clinic Regensburg, Germany
| | - Manuel Schmidt
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Veit Rothhammer
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Linz
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Julius Wegmann
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Eisenhut
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Gast LV, Völker S, Utzschneider M, Linz P, Wilferth T, Müller M, Kopp C, Hensel B, Uder M, Nagel AM. Combined imaging of potassium and sodium in human skeletal muscle tissue at 7 T. Magn Reson Med 2020; 85:239-253. [PMID: 32869364 DOI: 10.1002/mrm.28428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE To validate the feasibility of quantitative combined potassium (39 K) and sodium (23 Na) MRI in human calf muscle tissue, as well as to evaluate the reproducibility of the apparent tissue potassium concentration (aTPC) and apparent tissue sodium concentration (aTSC) determination in healthy muscle tissue. METHODS Quantitative 23 Na and 39 K MRI acquisition protocols were implemented on a 7 T MR system. A double-resonant 23 Na/39 K birdcage RF coil was used. Measurements of human lower leg were performed in a total acquisition time of TANa = 10:54 min/TAK = 8:06 min and using a nominal spatial resolution of 2.5 × 2.5 × 15 mm3 /7.5 × 7.5 × 30 mm3 for 23 Na/39 K MRI. Two aTSC and aTPC examinations in muscle tissue were performed during the same day on 10 healthy subjects. RESULTS The proposed acquisition and postprocessing workflow for 23 Na and 39 K MRI data sets provided reproducible aTSC and aTPC measurements. In human calf muscle tissue, the coefficient of variation between scan and re-scan was 5.7% for both aTSC and aTPC determination. Overall, mean values of aTSC = (17 ± 1) mM and aTPC = (85 ± 5) mM were measured. Moreover, for 39 K in calf muscle tissue, T 2 ∗ components of T 2 f ∗ = (1.2 ± 0.2) ms and T 2 s ∗ = (7.9 ± 0.9) ms, as well as a residual quadrupolar interaction of ω q ¯ = (143 ± 17) Hz, were determined. The fraction of the fast component was f = (58 ± 4)%. CONCLUSION Using the presented measurement and postprocessing approach, a reproducible aTSC and aTPC determination using 23 Na and 39 K MRI at 7 T in human skeletal muscle tissue is feasible in clinically acceptable acquisition durations.
Collapse
Affiliation(s)
- Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Völker
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Peter Linz
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Max Müller
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Kopp
- Department of Nephrology and Hypertension, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|